Skip to main content

Intrathymic Selection: New Insight into Tumor Immunology

  • Conference paper
Immune-Mediated Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 601))

Abstract

Central tolerance to self-antigens is formed in the thymus where deletion of clones with high affinity to “self” takes place. Expression of peripheral antigens in the thymus has been implicated in T cell tolerance and autoimmunity. During the last years, it has been shown that medullary thymic epithelial cells (mTECs) are the unique cell type expressing a diverse range of tissue-specific antigens. Promiscuous gene expression is a cell autonomous property of thymic epithelial cells and is maintained during the entire period of thymic T cell output. The array of promiscuously expressed self-antigens was random and included well-known targets for cancer immunotherapy, such as α -fetoprotein, P1A, tyrosinase, and gp100. Gene expression in normal tissues may result in tolerance of high-avidity cytotoxic T lymphocyte (CTL), leaving behind low-avidity CTL that cannot provide effective immunity against tumors expressing the relevant target antigens. Thus, it may be evident that tumor vaccines that targeted the tumor-associated antigens should be inefficient due to the loss of high-avidity T cell clones capable to be stimulated. Stauss with colleagues have described a strategy to circumvent immunological tolerance that can be used to generate high-avidity CTL against self-proteins, including human tumor-associated antigens. In this strategy, the allorestricted repertoire of T cells from allogenic donor is used as a source of T cell clones with high avidity to tumor antigens of recipient for adoptive immunotherapy. Then, the T cell receptor (TCR) genes isolated from antigen-specific T cells can be exploited as generic therapeutic molecules for antigen-specific immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amrolia, P.J., Reid, S.D., Gao, L., Schultheis, B., Dotti, G., Brenner, M.K., Melo, J.V., Goldman, J.M. and Stauss, H.J. (2003) Allorestricted cytotoxic T cells specific for human CD45 show potent antileukemic activity. Blood 101, 1007–1014.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, M.S., Venanzi, E.S., Chen, Z., Berzins, S.P., Benoist, C. and Mathis, D. (2005) The cellular mechanism of Aire control of T cell tolerance. Immunity 23, 227–239.

    Article  PubMed  CAS  Google Scholar 

  • Brandle, D., Brasseur, F., Weynants, P., Boon, T. and Van den Eynde, B. (1996) A mutated HLA-A2 molecule recognized by autologous cytotoxic T lymphocytes on a human renal cell carcinoma. J. Exp. Med. 183, 2501–2508.

    Article  PubMed  CAS  Google Scholar 

  • Cerundolo, V., Elliott, T., Elvin, J., Bastin, J., Rammensee, H.G. and Townsend, A. (1991) The binding affinity and dissociation rates of peptides for class I major histocompatibility complex molecules. Eur. J. Immunol. 21, 2069–2075.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, C.J., Zhao, Y., Zheng, Z., Rosenberg, S.A. and Morgan, R.A. (2006) Enhanced antitumor activity of murine-human hybrid T cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res. 66, 8878–8886.

    Article  PubMed  CAS  Google Scholar 

  • Coulie, P.G., Lehmann, F., Lethe, B., Herman, J., Lurquin, C., Andrawiss, M. and Boon, T. (1995) A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc. Natl. Acad. Sci. U.S.A. 92, 7976–7980.

    Article  PubMed  CAS  Google Scholar 

  • Dubey, P., Hendrickson, R.C., Meredith, S.C., Siegel, C.T., Shabanowitz, J., Skipper, J.C., Engelhard, V.H., Hunt, D.F. and Schreiber, H. (1997) The immunodominant antigen of an ultraviolet-induced regressor tumor is generated by a somatic point mutation in the DEAD box helicase p68. J. Exp. Med. 185, 695–705.

    Article  PubMed  CAS  Google Scholar 

  • Egger, G., Liang, G., Aparicio, A. and Jones, P.A. (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457–463.

    Article  PubMed  CAS  Google Scholar 

  • Falk, K., Rotzschke, O. Stevanovic, S., Jung, G. and Rammensee, H.G. (1991a) Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351, 290–296.

    Article  PubMed  CAS  Google Scholar 

  • Falk, K., Rotzschke, O., Deres, K., Metzger, J., Jung, G. and Rammensee, H.G. (1991b) Identification of naturally processed viral nonapeptides allows their quantification in infected cells and suggests an allele-specific T cell epitope forecast. J. Exp. Med. 174, 425–434.

    Article  PubMed  CAS  Google Scholar 

  • Falk, K., Rotzschke, O. and Rammensee, H.G. (1990) Cellular peptide composition governed by major histocompatibility complex class I molecules. Nature 348, 248–251.

    Article  PubMed  CAS  Google Scholar 

  • Felsher, D.W. (2003) Cancer revoked: oncogenes as therapeutic targets. Nat. Rev. Cancer 3, 375–380.

    Article  PubMed  CAS  Google Scholar 

  • Gao, L., Bellantuono, I., Elsasser, A., Marley, S.B., Gordon, M.Y., Goldman, J.M. and Stauss, H.J. (2000) Selective elimination of leukemic CD34+progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood 95, 2198–2203.

    PubMed  CAS  Google Scholar 

  • Golovkina, T.V., Chervonsky, A., Dudley, J.P. and Ross, S.R. (1992) Transgenic mouse mammary tumor virus superantigen expression prevents viral infection. Cell 69, 637–645.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, W.C. and Weinberg, R.A. (2002) Rules for making human tumor cells. N. Engl. J. Med. 347, 1593–1603.

    Article  PubMed  CAS  Google Scholar 

  • Kalbus, M., Fleckenstein, B.T., Offenhausser, M., Bluggel, M., Melms, A., Meyer, H.E., Rammensee, H.G., Martin, R., Jung, G. and Sommer, N. (2001) Ligand motif of the autoimmune disease-associated mouse MHC class II molecule H2-As. Eur. J. Immunol. 31, 551–562.

    Article  PubMed  CAS  Google Scholar 

  • Li, E. (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat. Rev. Genet. 3, 662–673.

    Article  PubMed  CAS  Google Scholar 

  • Logunova, N.N., Viret, C., Pobezinsky, L.A., Miller, S.A., Kazansky, D.B., Sundberg, J.P. and Chervonsky, A.V. (2005) Restricted MHC-peptide repertoire predisposes to autoimmunity. J. Exp. Med. 202, 73–84.

    Article  PubMed  CAS  Google Scholar 

  • Monach, P.A., Meredith, S.C., Siegel, C.T. and Schreiber, H. (1995) A unique tumor antigen produced by a single amino acid substitution. Immunity 2, 45–59.

    Article  PubMed  CAS  Google Scholar 

  • Morris, E.C., Tsallios, A., Bendle, G.M., Xue, S.A. and Stauss, H.J. (2005) A critical role of T cell antigen receptor-transduced MHC class I-restricted helper T cells in tumor protection. Proc. Natl. Acad. Sci. U.S.A. 102, 7934–7939.

    Article  PubMed  CAS  Google Scholar 

  • Munz, C., Hofmann, M., Yoshida, K., Moustakas, A.K., Kikutani, H., Stevanovic, S., Papadopoulos, G.K. and Rammensee, H.G. (2002) Peptide analysis, stability studies, and structural modeling explain contradictory peptide motifs and unique properties of the NOD mouse MHC class II molecule H2-Ag7. Eur. J. Immunol. 32, 2105–2116.

    Article  PubMed  CAS  Google Scholar 

  • Pelleitier, M. and Montplaisir, S. (1975) The nude mouse: a model of deficient T cell function. Methods Achiev. Exp. Pathol. 7, 149–166.

    PubMed  CAS  Google Scholar 

  • Pobezinskaya, Y., Chervonsky, A.V. and Golovkina, T.V. (2004) Initial stages of mammary tumor virus infection are superantigen independent. J. Immunol. 172, 5582–5587.

    PubMed  CAS  Google Scholar 

  • Prehn, R.T. (2005) On the nature of cancer and why anticancer vaccines don’t work. Cancer Cell Int. 5, 25.

    Article  PubMed  CAS  Google Scholar 

  • Prehn, R.T. and Main, J.M. (1957) Immunity to methylcholanthrene-induced sarcomas. J. Natl. Cancer Inst. 18, 769–778.

    PubMed  CAS  Google Scholar 

  • Rammensee, H.G. (1995) Chemistry of peptides associated with MHC class I and class II molecules. Curr. Opin. Immunol. 7, 85–96.

    Article  PubMed  CAS  Google Scholar 

  • Rammensee, H.G., Falk, K. and Rotzschke, O. (1993) Peptides naturally presented by MHC class I molecules. Annu. Rev. Immunol. 11, 213–244.

    Article  PubMed  CAS  Google Scholar 

  • Reche, P.A., Glutting, J.P., Zhang, H. and Reinherz, E.L. (2004) Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 56, 405–419.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, P.F., El-Gamil, M., Li, Y.F., Kawakami, Y., Loftus, D., Appella, E. and Rosenberg, S.A. (1996) A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J. Exp. Med. 183, 1185–1192.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, S.A., Sherry, R.M., Morton, K.E., Scharfman, W.J., Yang, J.C., Topalian, S.L., Royal, R.E., Kammula, U., Restifo, N.P., Hughes, M.S., Schwartzentruber, D., Berman, D.M., Schwarz, S.L., Ngo, L.T., Mavroukakis, S.A., White, D.E. and Steinberg, S.M. (2005) Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J. Immunol. 175, 6169–6176.

    PubMed  CAS  Google Scholar 

  • Rotzschke, O., Falk, K., Deres, K., Schild, H., Norda, M., Metzger, J., Jung, G. and Rammensee, H.G. (1990) Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature 348, 252–254.

    Article  PubMed  CAS  Google Scholar 

  • Rotzschke, O., Falk, K., Stevanovic, S., Jung, G., Walden, P. and Rammensee, H.G. (1991) Exact prediction of a natural T cell epitope. Eur. J. Immunol. 21, 2891–2894.

    Article  PubMed  CAS  Google Scholar 

  • Sadovnikova, E., Jopling, L.A., Soo, K.S. and Stauss, H.J. (1998) Generation of human tumor-reactive cytotoxic T cells against peptides presented by non-self HLA class I molecules. Eur. J. Immunol. 28, 193–200.

    Article  PubMed  CAS  Google Scholar 

  • Sadovnikova, E. and Stauss, H.J. (1996) Peptide-specific cytotoxic T lymphocytes restricted by nonself major histocompatibility complex class I molecules: reagents for tumor immunotherapy. Proc. Natl. Acad. Sci. U.S.A. 93, 13114–13118.

    Article  PubMed  CAS  Google Scholar 

  • Sadovnikova, E., Parovichnikova, E.N., Savchenko, V.G., Zabotina, T. and Stauss, H.J. (2002) The CD68 protein as a potential target for leukaemia-reactive CTL. Leukemia 16, 2019–2026.

    Article  PubMed  CAS  Google Scholar 

  • Sharkey, F.E. and Fogh, J. (1979) Incidence and pathological features of spontaneous tumors in athymic nude mice. Cancer Res. 39, 833–839.

    PubMed  CAS  Google Scholar 

  • Sherman, L.A., Theobald, M., Morgan, D., Hernandez, J., Bacik, I., Yewdell, J., Bennink, J. and Biggs, J. (1998) Strategies for tumor elimination by cytotoxic T lymphocytes. Crit. Rev. Immunol. 18, 47–54.

    PubMed  CAS  Google Scholar 

  • Simpson, A.J., Caballero, O.L., Jungbluth, A., Chen, Y.T. and Old, L.J. (2005) Cancer/testis antigens, gametogenesis and cancer. Nat. Rev. Cancer 5, 615–625.

    Article  PubMed  CAS  Google Scholar 

  • Sommermeyer, D., Neudorfer, J., Weinhold, M., Leisegang, M., Engels, B., Noessner, E., Heemskerk, M.H., Charo, J., Schendel, D.J., Blankenstein, T., Bernhard, H. and Uckert, W. (2006) Designer T cells by T cell receptor replacement. Eur. J. Immunol. 36, 3052–3059.

    Article  PubMed  CAS  Google Scholar 

  • Su, M.A. and Anderson, M.S. (2004) Aire: an update. Curr. Opin. Immunol. 16, 746–752.

    Article  PubMed  CAS  Google Scholar 

  • Svane, I.M., Boesen, M. and Engel, A.M. (1999) The role of cytotoxic T lymphocytes in the prevention and immune surveillance of tumors - lessons from normal and immunodeficient mice. Med. Oncol. 16, 223–238.

    Article  PubMed  CAS  Google Scholar 

  • Svane, I.M., Engel, A.M., Nielsen, M.B., Ljunggren, H.G., Rygaard, J. and Werdelin, O. (1996) Chemically induced sarcomas from nude mice are more immunogenic than similar sarcomas from congenic normal mice. Eur. J. Immunol. 26, 1844–1850.

    Article  PubMed  CAS  Google Scholar 

  • Van Der Bruggen, P., Zhang, Y., Chaux, P., Stroobant, V., Panichelli, C., Schultz, E.S., Chapiro, J., Van Den Eynde, B.J., Brasseur, F. and Boon, T. (2002) Tumor-specific shared antigenic peptides recognized by human T cells. Immunol. Rev. 188, 51–64.

    Article  Google Scholar 

  • Vartdal, F., Johansen, B.H., Friede, T., Thorpe, C.J., Stevanovic, S., Eriksen, J.E., Sletten, K., Thorsby, E., Rammensee, H.G. and Sollid, L.M. (1996) The peptide binding motif of the disease associated HLA-DQ (alpha 1* 0501, beta 1* 0201) molecule. Eur. J. Immunol. 26, 2764–2772.

    Article  PubMed  CAS  Google Scholar 

  • Wallny, H.J., Deres, K., Faath, S., Jung, G., Van Pel, A., Boon, T. and Rammensee, H.G. (1992b) Identification and quantification of a naturally presented peptide as recognized by cytotoxic T lymphocytes specific for an immunogenic tumor variant. Int. Immunol. 4, 1085–1090.

    Article  PubMed  CAS  Google Scholar 

  • Wallny, H.J., Rotzschke, O., Falk, K., Hammerling, G. and Rammensee, H.G. (1992a) Gene transfer experiments imply instructive role of major histocompatibility complex class I molecules in cellular peptide processing. Eur. J. Immunol. 22, 655–659.

    Article  PubMed  CAS  Google Scholar 

  • Ward, P.L., Koeppen, H.K., Hurteau, T., Rowley, D.A. and Schreiber, H. (1990) Major histocompatibility complex class I and unique antigen expression by murine tumors that escaped from CD8+T cell-dependent surveillance. Cancer Res. 50, 3851–3858.

    PubMed  CAS  Google Scholar 

  • Willemsen, R.A., Debets, R., Chames, P. and Bolhuis, R.L. (2003) Genetic engineering of T cell specificity for immunotherapy of cancer. Hum. Immunol. 64, 56–68.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, D.B., Wilson, D.H., Schroder, K., Pinilla, C., Blondelle, S., Houghten, R.A. and Garcia, K.C. (2004) Specificity and degeneracy of T cells. Mol. Immunol. 40, 1047–1055.

    Article  PubMed  CAS  Google Scholar 

  • Wolfel, T., Hauer, M., Schneider, J., Serrano, M., Wolfel, C., Klehmann-Hieb, E., De Plaen, E., Hankeln, T., Meyer zum Buschenfelde, K.H. and Beach, D. (1995) A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269, 1281–1284.

    Article  PubMed  CAS  Google Scholar 

  • Woodruff, M.F. and Hodson, B.A. (1985) The effect of passage in vitro and in vivo on the properties of murine fibrosarcomas I. Tumorigenicity and immunogenicity. Br. J. Cancer 51, 161–169.

    PubMed  CAS  Google Scholar 

  • Xu, X.N. and Screaton, G.R. (2002) MHC/peptide tetramer-based studies of T cell function. J. Immunol. Methods 268, 21–28.

    Article  PubMed  CAS  Google Scholar 

  • Xue, S., Gillmore, R., Downs, A., Tsallios, A., Holler, A., Gao, L., Wong, V., Morris, E. and Stauss, H.J. (2005) Exploiting T cell receptor genes for cancer immunotherapy. Clin. Exp. Immunol. 139, 167–172.

    Article  PubMed  CAS  Google Scholar 

  • Zerrahn, J., Held, W. and Raulet, D.H. (1997) The MHC reactivity of the T cell repertoire prior to positive and negative selection. Cell 88, 627–636.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry B. Kazansky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Kazansky, D.B. (2007). Intrathymic Selection: New Insight into Tumor Immunology. In: Shurin, M.R., Smolkin, Y.S. (eds) Immune-Mediated Diseases. Advances in Experimental Medicine and Biology, vol 601. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72005-0_14

Download citation

Publish with us

Policies and ethics