Skip to main content

A quarter-century ago, a sequence homologous to the Ri plasmid (pRi) T-DNA of Agrobacterium rhizogenes was detected in the genome of untransformed tree tobacco, Nicotiana glauca, and was named “cellular T-DNA” (cT-DNA). The origin of the homologous sequences in tobacco remained unknown for a long period, but at present, it has been clearly demonstrated that the cT-DNA is the pRi T-DNA inserted by ancient infection with mikimopine-type A. rhizogenes. The cT-DNA of N. glauca is composed of an imperfect inverted repeat and it contains homologues of some pRi T-DNA genes involved in adventitious root formation and opine synthesis, which are called NgrolB, NgrolC, NgORF13, NgORF14, and Ngmis. In spite of the footprint of ancient insertion of pRi T-DNA, these homologues are still expressed not only in genetic tumors of F1 hybrids of N. glauca x N. langsdorffii but also in some organs of N. glauca, although at a low level. The cT-DNA is also found in some other species of the genus Nicotiana, with mikimopine-type cT-DNA contained in at least three, N. tomentosa, N. tomentosiformis, and N. tabacum. Therefore, there is a possibility that multiple infection events occurred independently in several ancestors of Nicotiana. Furthermore, some plant species in different families also contain cT-DNA-like sequences, although the details are still unknown. Tumors are spontaneously generated on some plants in the absence of tumorigenic microorganisms. Hybrid plants of Nicotiana species also form genetic tumors, but the mechanism of this tumorigenesis is still unknown. One of the parents of the hybrid usually contains cT-DNA, implying that it is the causal factor of tumorigenesis, although the causal association between the cT-DNA and tumorigenesis remains unsolved. Since pRi-transgenic plants exhibit a peculiar phenotype, the so-called “hairy root syndrome”, which shows advantageous traits in some cases, ancient pRi-transformed plants might also have predominated in competition with parental plants or survived under a harsh climate. Therefore, the insertion events of T-DNA into the genome of plants might have influenced their evolution, resulting in the creation of new plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  • Ahuja MA (1962) A cytogenetic study of heritable tumors in Nicotiana species hybrids. Genetics 47: 865-880

    PubMed  CAS  Google Scholar 

  • Ahuja MA (1966) Genetic tumors and introgression in Nicotiana. Genetics 54: 316

    Google Scholar 

  • Ahuja MA (1968) An hypothesis and evidence concerning the genetic components controlling tumor formation in Nicotiana. Mol Gen Genet 103: 176-184

    Article  PubMed  CAS  Google Scholar 

  • Ahuja MA (1998) Genetic tumors in Nicotiana and other plants. Q Rev Biol 73: 439-462

    Article  Google Scholar 

  • Ames IH, Mistretta PW (1975) Auxin: its role in genetic tumor induction. Plant Physiol 56: 744-746

    Article  PubMed  CAS  Google Scholar 

  • Aoki S (2004) Resurrection of an ancestral gene: functional and evolutionary analyses of the Ngrol genes transferred from Agrobacterium to Nicotiana. J Plant Res 117: 329-337

    PubMed  CAS  Google Scholar 

  • Aoki S, Ito M (2000) Molecular phylogeny of Nicotiana (Solanaceae) based on the nucleotide sequence of the matK gene. Plant Bio 2: 316-324

    Article  CAS  Google Scholar 

  • Aoki S, Ito M (2001) Consideration of the classification system and phytogeogra-phy of the Nicotiana (Solanaceae) by the analysis of molecular phylogeny. Pro Jap Soc PI Tax 16: 49-67

    Google Scholar 

  • Aoki S, Kawaoka A, Sekine M, Ichikawa T, Fujita T, Shinmyo A, Syono K (1994) Sequence of the cellular T-DNA in the untransformed genome of Nicotiana glauca that is homologous to ORFs 13 and 14 of the Ri plasmid and analysis of its expression in genetic tumours of N. glauca × N. langsdorffii. Mol Gen Genet 243: 706-710

    PubMed  CAS  Google Scholar 

  • Aoki S, Syono K (1999a) Function of Ngrol genes in the evolution of Nicotiana glauca: Conservation of the function of NgORF13 and NgORF14 after an-cient infection by an Agrobacterium rhizogenes-like ancestor. Plant Cell Physiol 40: 222-230

    CAS  Google Scholar 

  • Aoki S, Syono K (1999b) Horizontal gene transfer and mutation: Ngrol genes in the genome of Nicotiana glauca. Proc Natl Acad Sci USA 96: 13229-13234

    Article  PubMed  CAS  Google Scholar 

  • Baumann K, De Paolis A, Costantino P, Gualberti G (1999) The DNA binding site of the Dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants. Plant Cell 11: 323-334

    Article  PubMed  CAS  Google Scholar 

  • Bayer MH (1967) Thin-layer chromatography of auxin and inhibitors in Nicotiana glauca, N. langsdorffii and three of their tumor-forming hybrids. Planta 72: 329-337

    Article  CAS  Google Scholar 

  • Bouchez D, Tourneur J (1991) Organization of the agropine synthesis region of the T-DNA of the Ri plasmid from Agrobacterium rhizogenes. Plasmid 25: 27-39

    Article  PubMed  CAS  Google Scholar 

  • Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LM, Yang W, Mayer JE, Roa-Rodriguez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433: 629-633

    Article  PubMed  CAS  Google Scholar 

  • Camilleri C, Jouanin L (1991) The TR-DNA region carrying the auxin synthesis genes of the Agrobacterium rhizogenes agropine-type plasmid pRiA4: nucleo-tide sequence analysis and introduction into tobacco plants. Mol Plant-Microbe Interact 4: 155-162

    PubMed  CAS  Google Scholar 

  • Casanova E, Trillas MI, Moysset L, Vainstein A (2005) Influence of rol genes in floriculture. Biotechnol Adv 23: 3-39

    Article  PubMed  CAS  Google Scholar 

  • De Buck S, Jacobs A, Van Montagu M, Depicker A (1999) The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a re-combination process resembling T-DNA integration. Plant J 20: 295-304

    Article  PubMed  Google Scholar 

  • Dessaux Y, Petit A, Tempé J (1993) Chemistry and biochemistry of opines, chemical mediators of parasitism. Phytochemistry 34: 31-38

    Article  CAS  Google Scholar 

  • Feng XH, Dube SK, Bottino PJ, Kung SD (1990) Restoration of shooty morphol-ogy of a nontumorous mutant of Nicotiana glauca × N. langsdorffii by cyto-kinin and the isopentenyltransferase gene. Plant Mol Biol 15: 407-420

    Article  PubMed  CAS  Google Scholar 

  • Fründt C, Meyer AD, Ichikawa T, Meins F, Jr. (1998) A tobacco homologue of the Ri-plasmid orf13 gene causes cell proliferation in carrot root discs. Mol Gen Genet 259: 559-568

    Article  PubMed  Google Scholar 

  • Fujita T (1994) Screening of genes related to tumor formation in tobacco genetic tumors. Plant Tiss Cult Lett 11: 171-177

    CAS  Google Scholar 

  • Fujita T, Ichikawa T, Syono K (1991) Changes in morphology, levels of endoge-nous IAA and protein composition in relation to the development of tobacco genetic tumor induced in the dark. Plant Cell Physiol 32: 169-177

    CAS  Google Scholar 

  • Furner IJ, A. HG, Amasino RM, Garfinkel DJ, Gordon MP, Nester EW (1986) An Agrobacterium transformation in the evolution of the genus Nicotiana. Nature 319: 422-427

    Article  CAS  Google Scholar 

  • Gelvin SB (2005) Agricultural biotechnology: gene exchange by design. Nature 433: 583-584

    Article  PubMed  CAS  Google Scholar 

  • Goodspeed TH (1954) The Genus Nicotiana, Chronica Botanica. Waltham, Mas-sachusetts

    Google Scholar 

  • Handayani NSN, Moriuchi H, Yamakawa M, Yamashita I, Yoshida K, Tanaka N (2005) Characterization of the rolB promoter on mikimopine-type pRi1724 T-DNA. Plant Sci 108: 1353-1364

    Article  CAS  Google Scholar 

  • Hansen G, Larribe M, Vaubert D, Tempé J, Biermann BJ, Montoya AL, Chilton M-D, Brevet J (1991) Agrobacterium rhizogenes pRi8196 T-DNA: mapping and DNA sequence of functions involved in mannopine synthesis and hairy root differentiation. Proc Natl Acad Sci USA 88: 7763-7767

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa T, Kobayashi M, Nakagawa S, Sakurai A, Syono K (1989) Morphologi-cal observations and qualitative and quantitative studies of auxins after induc-tion of tobacco genetic tumor. Plant Cell Physiol 30: 57-63

    CAS  Google Scholar 

  • Ichikawa T, Ozeki Y, Syono K (1990) Evidence for the expression of the rol genes of Nicotiana glauca in genetic tumors of N. glauca X N. langsdorffii. Mol Gen Genet 220: 177-180

    Article  PubMed  CAS  Google Scholar 

  • Japan Tobacco Inc. (1990) Illustrated Book of The Genus Nicotiana. Seibundo Shinkosha Publishing Co., Tokyo, Japan

    Google Scholar 

  • Intrieri MC, Buiatti M (2001) The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana. Mol Phylogenet Evol 20: 100-110

    Article  PubMed  CAS  Google Scholar 

  • Journin L, Bouchezs D, Drong RF, Tepfer D, Slightom JL (1989) Analysis of TR-DNA/plant junctions in the genome of Convolvulus arvensis clone trans-formed by Agrobacterium rhizogenes strain A4. Plant Mol Biol 12: 72-85

    Google Scholar 

  • Kostoff D (1930) Tumors and other malformations on certain Nicotiana hybrids. Zentralbl Bakteriol Parasitenkd Infectionskr Hyg Abt 1: Org 81: 244-260

    CAS  Google Scholar 

  • Kung SD (1989) Genetic tumors in Nicotiana. Bot Bull Acad Sinica 30: 231-240

    Google Scholar 

  • Kwok WW, Nester EW, Gordon MP (1985) Unusual plasmid DNA organization in an octopine crown gall tumor. Nucleic Acids Res 13: 459-471

    Article  PubMed  CAS  Google Scholar 

  • Limami MA, Sun LY, Douat C, Helgeson J, Tepfer D (1998) Natural genetic transformation by Agrobacterium rhizogenes . Annual flowering in two bien-nials, belgian endive and carrot. Plant Physiol 118: 543-550

    Article  PubMed  CAS  Google Scholar 

  • Meyer AD, Ichikawa T, Meins F, Jr. (1995) Horizontal gene transfer: regulated expression of a tobacco homologue of the Agrobacterium rhizogenes rolC gene. Mol Gen Genet 249: 265-273

    Article  PubMed  CAS  Google Scholar 

  • Moriguchi K, Maeda Y, Satou M, Hardayani NS, Kataoka M, Tanaka N, Yoshida K (2001) The complete nucleotide sequence of a plant root-inducing (Ri) plasmid indicates its chimeric structure and evolutionary relationship between tumor-inducing (Ti) and symbiotic (Sym) plasmids in Rhizobiaceae. J Mol Biol 307: 771-784

    Article  PubMed  CAS  Google Scholar 

  • Moriuchi H, Okamoto C, Nishihama R, Yamashita I, Machida Y, Tanaka N (2004) Nuclear localization and interaction of RolB with plant 14-3-3 proteins correlates with induction of adventitious roots by the oncogene rolB. Plant J 38: 260-275

    Article  PubMed  CAS  Google Scholar 

  • Nachmias B, Ugolini S, Ricci MD, Pellegrini MG, Bogani P, Bettini P, Inzé D, Buiatti M (1987) Tumor formation and morphogenesis on different Nicotiana sp. and hybrids induced by Agrobacterium tumefaciens T-DNA mutants. Dev Genet 8: 61-71

    Article  Google Scholar 

  • Näf U (1958) Studies on tumor formation in Nicotiana hybrids. I. The classifica-tion of the parents into two etiologically significant groups. Growth 22: 167-180

    PubMed  Google Scholar 

  • Nagata N, Kosono S, Sekine M, Shinmyo A, Syono K (1995) The regulatory func-tions of the rolB and rolC genes of Agrobacterium rhizogenes are conserved in the homologous genes (Ngrol) of Nicotiana glauca in tobacco genetic tu-mors. Plant Cell Physiol 36: 1003-1012

    PubMed  CAS  Google Scholar 

  • Nagata N, Kosono S, Sekine M, Shinmyo A, Syono K (1996) Different expression patterns of the promoter of the NgrolB and NgrolC genes during the devel-opment of tobacco genetic tumors. Plant Cell Physiol 37: 489-493

    CAS  Google Scholar 

  • Nandi SK, de Klerk GJM, Parker CW, Palni LSM (1990a) Endogenous cytokinin levels and metabolism of zeatin riboside in genetic tumour tissues and non-tumourous tissues of tobacco. Physiol Plant 78: 197-204

    Article  CAS  Google Scholar 

  • Nandi SK, Palni LSM, Parker CW (1990b) Dynamic of endogenous cytokinin during the growth cycle of a hormone-autotrophic genetic tumor line of to-bacco. Plant Physiol 94: 1084-1089

    Article  PubMed  CAS  Google Scholar 

  • Oger P, Mansouri H, Dessaux Y (2000) Effect of crop rotation and soil cover on alteration of the soil microflora generated by the culture of transgenic plants producing opines. Mol Ecol 9: 881-890

    Article  PubMed  CAS  Google Scholar 

  • Oger P, Petit A, Dessaux Y (1997) Genetically engineered plants producing opines alter their biological environment. Nat Biotechnol 15: 369-372

    Article  PubMed  CAS  Google Scholar 

  • Okamuro JK, Goldberg RB (1985) Tobacco single-copy DNA is highly homolo-gous to sequences present in the genomes of its diploid progenies. Mol Gen Genet 198: 290-298

    Article  CAS  Google Scholar 

  • Röder FT, Schmulling T, Gatz C (1994) Efficiency of the tetracycline-dependent gene expression system: complete suppression and efficient induction of the rolB phenotype in transgenic plants. Mol Gen Genet 243: 32-38

    Article  PubMed  Google Scholar 

  • Serino G, Clerot D, Brevet J, Costantino P, Cardarelli M (1994) rol genes of Agrobacterium rhizogenes cucumopine strain: sequence, effects and pattern of expression. Plant Mol Biol 26: 415-422

    Article  PubMed  CAS  Google Scholar 

  • Sinkar VP, White FF, Furner IJ, Abrahamsen M, Pythoud F, Gordon MP (1988) Reversion of aberrant plants transformed with Agrobacterium rhizogenes is associated with the transcriptional inactivation of the TL-DNA genes. Plant Physiol 86: 584-590

    Article  PubMed  CAS  Google Scholar 

  • Slightom JL, Durand-Tardif M, Jouanin L, Tepfer D (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. Identification of open reading frames. J Biol Chem 261: 108-121

    PubMed  CAS  Google Scholar 

  • Smith HH (1968) Recent cytogenetic studies in the genus Nicotiana. Adv Genet 14: 1-54

    Article  Google Scholar 

  • Smith HH (1988) The inheritance of genetic tumors in Nicotiana hybrids. J Hered-ity 79: 277-283

    Google Scholar 

  • Spanò L, Pomponi M, Costantino P, van Slogteren GMS, Tempé J (1982) Identifi-cation of T-DNA in the root-inducting plasmid of the agropine type Agrobac-terium rhizogenes 1855. Plant Mol Biol 1: 291-300

    Article  Google Scholar 

  • Suzuki K, Tanaka N, Kamada H, Yamashita I (2001) Mikimopine synthase (mis) gene on pRi1724. Gene 263: 49-58

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Yamashita I, Tanaka N (2002) Tobacco plants were transformed by Agrobacterium rhizogenes infection during their evolution. Plant J 32: 775-787

    Article  PubMed  CAS  Google Scholar 

  • Tanaka N, Ikeda T, Oka A (1994) Nucleotide sequence of the rol region of the mikimopine-type root-inducing plasmid pRi1724. Biosci Biotechnol Biochem 58: 548-551

    Article  PubMed  CAS  Google Scholar 

  • Tanaka N, Matsumoto T (1993) Regenerants from Ajuga hairy roots with high productivity of 20-hydroxyecdysone. Plant Cell Rep 13: 87-90

    Article  CAS  Google Scholar 

  • Tanaka N, Yamakawa M, Yamashita I (1998) Characterization of transcription of genes involved in hairy root induction on pRi1724 core-T-DNA in two Ajuga reptans hairy root lines. Plant Sci 137: 95-105

    Article  PubMed  CAS  Google Scholar 

  • Taylor BH, White FF, Nester EW, Gordon MP (1985) Transcription of Agrobac-terium rhizogenes A4 T-DNA. Mol Gen Genet 201: 546-553

    Article  CAS  Google Scholar 

  • Tepfer D (1982) La transfromation génétique de plants supérieures par Agrobacte-rium rhizogenes. In 2ed Colloque sur les Recherches Fruitéres - Bordeaux, pp 47-59

    Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobacte-rium rhizogenes: sexual transmission of the transformed genotype and pheno-type. Cell 37: 959-967

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF, Nutter R, Montoya AL, Gordon MP, Nester EW (1980) Integra-tion and organization of Ti plasmid sequences in crown gall tumors. Cell 19: 729-739

    Article  PubMed  CAS  Google Scholar 

  • Udagawa M, Aoki S, Syono K (2004) Expression analysis of the NgORF13 pro-moter during the development of tobacco genetic tumors. Plant Cell Physiol 45: 1023-1031

    Article  PubMed  CAS  Google Scholar 

  • White FF, Garfinkel DJ, Huffman GA, Gordon MP, Nester EW (1983) Sequence homologous to Agrobacterium rhizogenes T-DNA in the genomes of unin-fected plants. Nature 301: 348-350

    Article  CAS  Google Scholar 

  • White FF, Ghidossi G, Gordon MP, Nester EW (1982) Tumor induction by Agro-bacterium rhizogenes involves the transfer of plasmid DNA to the plant ge-nome. Proc Natl Acad Sci USA 79: 3193-3197

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Simpson RB (1981) Revertant seedling from crown gall tumors retain a portion of the bacterial Ti plasmid sequences. Proc Natl Acad Sci USA 78: 4151-4155

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tanaka, N. (2008). Horizontal Gene Transfer. In: Tzfira, T., Citovsky, V. (eds) Agrobacterium: From Biology to Biotechnology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72290-0_17

Download citation

Publish with us

Policies and ethics