Skip to main content

Cognitive Science of Attention: Current Concepts and Approaches

  • Chapter
  • First Online:
The Neuropsychology of Attention

Abstract

The cognitive science of attention has evolved over the past 2 decades to the point that there are now many well-accepted concepts and methodological approaches available for use in studying attentional processes. Equally important is the fact that attention is now widely accepted as essential to cognition and there is little debate about whether it is a valid topic of scientific study. Various theories and attentional constructs developed over the past 2 decades have been formalized with clear operational definitions and predictions about how attention performance should vary under different conditions, such that it is possible to test their validity and consistency. Accordingly, there is now a relatively vast and rich body of cognitive research on attention. Several of these lines of research that are particularly relevant to the neuropsychology of attention will be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schvaneveldt, R., & Meyer, D. E. (1973). Retrieval and comparison processes in semantic memory. In S. Kornblum (Ed.), Attentional and performance IV. New York: Academic.

    Google Scholar 

  2. Tulving, E. (1983). Elements of episodic memory. Oxford: Clarendon.

    Google Scholar 

  3. Posner, M. I. (1986). Chronometric explorations of the mind. New York: Oxford University Press.

    Google Scholar 

  4. Posner, M. I. (2004). Cognitive neuroscience of attention. New York: Guilford Press.

    Google Scholar 

  5. Kirsner, K., & Smith, M. C. (1974). Modality effects in word recognition. Memory and Cognition, 2, 637–640.

    PubMed  Google Scholar 

  6. Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology. General, 109, 160–174.

    Google Scholar 

  7. Posner, M. I. (1978). Chronometric explorations of mind. Hillsdale: Erlbaum.

    Google Scholar 

  8. Posner, M. I. (1980). Orienting of attention: The VIIth Sir Frederic Bartlett Lecture. Quarterly Journal of Experimental Psychology, 32, 3–25.

    PubMed  Google Scholar 

  9. Navon, D. (1981). Do attention and decision follow perception Comment on Miller. Journal of Experimental Psychology. Human Perception and Performance, 7(6), 1175–1182.

    PubMed  Google Scholar 

  10. Navon, D., & Norman, J. (1983). Does global precedence really depend on visual angle? Journal of Experimental Psychology. Human Perception and Performance, 9(6), 955–965.

    PubMed  Google Scholar 

  11. Pomerantz, J. R. (1983). Global and local precedence: Selective attention in form and motion perception. Journal of Experimental Psychology. General, 112(4), 516–540.

    PubMed  Google Scholar 

  12. Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9(3), 353–383.

    Google Scholar 

  13. Martin, M. (1979). Local and global processing: The role of sparcity. Memory and Cognition, 7, 479–484.

    Google Scholar 

  14. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136.

    PubMed  Google Scholar 

  15. Fink, G. R., Halligan, P. W., Marshall, J. C., Frith, C. D., Frackowiak, R. S., & Dolan, R. J. (1996). Where in the brain does visual attention select the forest and the trees? Nature, 382(6592), 626–628.

    PubMed  Google Scholar 

  16. Fink, G. R., Halligan, P. W., Marshall, J. C., Frith, C. D., Frackowiak, R. S., & Dolan, R. J. (1997). Neural mechanisms involved in the processing of global and local aspects of hierarchically organized visual stimuli. Brain, 120(Pt 10), 1779–1791.

    PubMed  Google Scholar 

  17. Oliveri, M., & Vallar, G. (2009). Parietal versus temporal lobe components in spatial cognition: Setting the mid-point of a horizontal line. Journal of Neuropsychology, 3(Pt 2), 201–211.

    PubMed  Google Scholar 

  18. Eriksen, B., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143–149.

    Google Scholar 

  19. Bjork, E. M. J. (1977). On the nature of input channels in visual attention. Psychological Review, 84, 472–484.

    PubMed  Google Scholar 

  20. Eriksen, C. (1995). The Flankers Task and response competition: A useful tool for investigating a variety of cognitive problems. Visual Cognition, 2, 101–118.

    Google Scholar 

  21. Miller, J. (1991). The flanker compatibility effect as a function of visual angle, attentional focus, visual transients, and perceptual load: A search for boundary conditions. Perception & Psychophysics, 49(3), 270–288.

    Google Scholar 

  22. Paquet, L., & Lortie, C. (1990). Evidence for early selection: Precuing target location reduces interference from same-category distractors. Perception & Psychophysics, 48(4), 382–388.

    Google Scholar 

  23. Eriksen, C. W., Pan, K., & Botella, J. (1993). Attentional distribution in visual space. Psychological Research, 56(1), 5–13.

    PubMed  Google Scholar 

  24. Pan, K., & Eriksen, C. W. (1993). Attentional distribution in the visual field during same-different judgments as assessed by response competition. Perception & Psychophysics, 53(2), 134–144.

    Google Scholar 

  25. LaBerge, D., Brown, V., Carter, M., Bash, D., & Hartley, A. (1991). Reducing the effects of adjacent distractors by narrowing attention. Journal of Experimental Psychology. Human Perception and Performance, 17(1), 65–76.

    PubMed  Google Scholar 

  26. Lau, H., Rogers, R. D., & Passingham, R. E. (2006). Dissociating response selection and conflict in the medial frontal surface. NeuroImage, 29(2), 446–451.

    PubMed  Google Scholar 

  27. Castellanos, F. X., Sonuga-Barke, E. J., Scheres, A., Di Martino, A., Hyde, C., & Walters, J. R. (2005). Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability. Biological Psychiatry, 57(11), 1416–1423.

    PubMed  Google Scholar 

  28. Ruchsow, M., Herrnberger, B., Beschoner, P., Gron, G., Spitzer, M., & Kiefer, M. (2006). Error processing in major depressive disorder: Evidence from event-related potentials. Journal of Psychiatric Research, 40(1), 37–46.

    PubMed  Google Scholar 

  29. Wylie, S. A., Stout, J. C., & Bashore, T. R. (2005). Activation of conflicting responses in Parkinson’s disease: Evidence for degrading and facilitating effects on response time. Neuropsychologia, 43(7), 1033–1043.

    PubMed  Google Scholar 

  30. Stins, J. F., van Baal, G. C., Polderman, T. J., Verhulst, F. C., & Boomsma, D. I. (2004). Heritability of Stroop and flanker performance in 12-year old children. BMC Neuroscience, 5, 49.

    PubMed  Google Scholar 

  31. Herrmann, M. J., Rommler, J., Ehlis, A. C., Heidrich, A., & Fallgatter, A. J. (2004). Source localization (LORETA) of the error-related-negativity (ERN/Ne) and positivity (Pe). Brain Research. Cognitive Brain Research, 20(2), 294–299.

    PubMed  Google Scholar 

  32. Starreveld, P. A., Theeuwes, J., & Mortier, K. (2004). Response selection in visual search: The influence of response compatibility of nontargets. Journal of Experimental Psychology. Human Perception and Performance, 30(1), 56–78.

    PubMed  Google Scholar 

  33. Rollnik, J. D., Schroder, C., Rodriguez-Fornells, A., et al. (2004). Functional lesions and human action monitoring: Combining repetitive transcranial magnetic stimulation and event-related brain potentials. Clinical Neurophysiology, 115(1), 145–153.

    PubMed  Google Scholar 

  34. Russeler, J., Kuhlicke, D., & Munte, T. F. (2003). Human error monitoring during implicit and explicit learning of a sensorimotor sequence. Neuroscience Research, 47(2), 233–240.

    PubMed  Google Scholar 

  35. Rouder, J. N., & King, J. W. (2003). Flanker and negative flanker effects in letter identification. Perception & Psychophysics, 65(2), 287–297.

    Google Scholar 

  36. Sanders, A. F., & Lamers, J. M. (2002). The Eriksen flanker effect revisited. Acta Psychologica, 109(1), 41–56.

    PubMed  Google Scholar 

  37. Hazeltine, E., Poldrack, R., & Gabrieli, J. D. (2000). Neural activation during response competition. Journal of Cognitive Neuroscience, 12(Suppl 2), 118–129.

    PubMed  Google Scholar 

  38. Jonkman, L. M., Kemner, C., Verbaten, M. N., et al. (1999). Perceptual and response interference in children with attention-deficit hyperactivity disorder, and the effects of methylphenidate. Psychophysiology, 36(4), 419–429.

    PubMed  Google Scholar 

  39. Zhang, H. H., Zhang, J., & Kornblum, S. (1999). A parallel distributed processing model of stimulus-stimulus and stimulus–response compatibility. Cognitive Psychology, 38(3), 386–432.

    PubMed  Google Scholar 

  40. Cohen, A., Fuchs, A., Bar-Sela, A., Brumberg, Y., & Magen, H. (1999). Correlational cuing as a function of target complexity and target-flanker similarity. Perception & Psychophysics, 61(2), 275–290.

    Google Scholar 

  41. Zeef, E. J., Sonke, C. J., Kok, A., Buiten, M. M., & Kenemans, J. L. (1996). Perceptual factors affecting age-related differences in focused attention: Performance and psychophysiological analyses. Psychophysiology, 33(5), 555–565.

    PubMed  Google Scholar 

  42. Danielmeier, C., Wessel, J. R., Steinhauser, M., & Ullsperger, M. (2009). Modulation of the error-related negativity by response conflict. Psychophysiology, 46(6), 1288–1298.

    PubMed  Google Scholar 

  43. Yu, A. J., Dayan, P., & Cohen, J. D. (2009). Dynamics of attentional selection under conflict: Toward a rational Bayesian account. Journal of Experimental Psychology. Human Perception and Performance, 35(3), 700–717.

    PubMed  Google Scholar 

  44. Wylie, S. A., van den Wildenberg, W. P., Ridderinkhof, K. R., et al. (2009). The effect of speed-accuracy strategy on response interference control in Parkinson’s disease. Neuropsychologia, 47(8–9), 1844–1853.

    PubMed  Google Scholar 

  45. Brown, J. W. (2009). Conflict effects without conflict in anterior cingulate cortex: Multiple response effects and context specific representations. NeuroImage, 47(1), 334–341.

    PubMed  Google Scholar 

  46. Wendt, M., & Luna-Rodriguez, A. (2009). Conflict-frequency affects flanker interference: Role of stimulus-ensemble-specific practice and flanker-response contingencies. Experimental Psychology, 56(3), 206–217.

    PubMed  Google Scholar 

  47. Weaver, B., Bedard, M., McAuliffe, J., & Parkkari, M. (2009). Using the Attention Network Test to predict driving test scores. Accident Analysis and Prevention, 41(1), 76–83.

    PubMed  Google Scholar 

  48. Ochsner, K. N., Hughes, B., Robertson, E. R., Cooper, J. C., & Gabrieli, J. D. (2009). Neural systems supporting the control of affective and cognitive conflicts. Journal of Cognitive Neuroscience, 21(9), 1842–1855.

    PubMed  Google Scholar 

  49. Brazil, I. A., de Bruijn, E. R., Bulten, B. H., et al. (2009). Early and late components of error monitoring in violent offenders with psychopathy. Biological Psychiatry, 65(2), 137–143.

    PubMed  Google Scholar 

  50. Wylie, S. A., van den Wildenberg, W. P., Ridderinkhof, K. R., et al. (2009). The effect of Parkinson’s disease on interference control during action selection. Neuropsychologia, 47(1), 145–157.

    PubMed  Google Scholar 

  51. Di Martino, A., Ghaffari, M., Curchack, J., et al. (2008). Decomposing intra-subject variability in children with attention-deficit/hyperactivity disorder. Biological Psychiatry, 64(7), 607–614.

    PubMed  Google Scholar 

  52. Lavie, N., & Driver, J. (1996). On the spatial extent of attention in object-based visual selection. Perception & Psychophysics, 58(8), 1238–1251.

    Google Scholar 

  53. Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology. Human Perception and Performance, 21(3), 451–468.

    PubMed  Google Scholar 

  54. Lavie, N., & Tsal, Y. (1994). Perceptual load as a major determinant of the locus of selection in visual attention. Perception & Psychophysics, 56(2), 183–197.

    Google Scholar 

  55. Tsal, Y., Meiran, N., & Lavie, N. (1994). The role of attention in illusory conjunctions. Perception & Psychophysics, 55(3), 350–358.

    Google Scholar 

  56. de Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. (2001). The role of working memory in visual selective attention. Science, 291(5509), 1803–1806.

    PubMed  Google Scholar 

  57. Conway, A. R., Cowan, N., & Bunting, M. F. (2001). The cocktail party phenomenon revisited: The importance of working memory capacity. Psychonomic Bulletin and Review, 8(2), 331–335.

    PubMed  Google Scholar 

  58. Maylor, E. A., & Hockey, R. (1985). Inhibitory component of externally controlled covert orienting in visual space. Journal of Experimental Psychology. Human Perception and Performance, 11(6), 777–787.

    PubMed  Google Scholar 

  59. Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4(4), 138–147.

    PubMed  Google Scholar 

  60. Tipper, S. P., Weaver, B., Jerreat, L. M., & Burak, A. L. (1994). Object-based and environment-based inhibition of return of visual attention. Journal of Experimental Psychology. Human Perception and Performance, 20(3), 478–499.

    PubMed  Google Scholar 

  61. Braun, D., & Breitmeyer, B. G. (1990). Effects of reappearance of fixated and attended stimuli upon saccadic reaction time. Experimental Brain Research, 81(2), 318–324.

    PubMed  Google Scholar 

  62. Posner, M. I., Cohen, Y., & Rafal, R. D. (1982). Neural systems control of spatial orienting. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 298(1089), 187–198.

    PubMed  Google Scholar 

  63. Wilson, D. E., Castel, A. D., & Pratt, J. (2006). Long-term inhibition of return for spatial locations: Evidence for a memory retrieval account. Quarterly Journal of Experimental Psychology, 59(12), 2135–2147.

    Google Scholar 

  64. Tipper, C., & Kingstone, A. (2005). Is inhibition of return a reflexive effect? Cognition, 97(3), B55–B62.

    PubMed  Google Scholar 

  65. Leek, E. C., Reppa, L., & Tipper, S. P. (2003). Inhibition of return for objects and locations in static displays. Perception & Psychophysics, 65(3), 388–395.

    Google Scholar 

  66. Tipper, S. P., Grison, S., & Kessler, K. (2003). Long-term inhibition of return of attention. Psychological Science, 14(1), 19–25.

    PubMed  Google Scholar 

  67. Snyder, J. J., & Kingstone, A. (2001). Inhibition of return at multiple locations in visual search: When you see it and when you don’t. The Quarterly Journal of Experimental Psychology. A, 54(4), 1221–1237.

    Google Scholar 

  68. Howard, L. A., Lupianez, J., & Tipper, S. P. (1999). Inhibition of return in a selective reaching task: An investigation of reference frames. The Journal of General Psychology, 126(4), 421–442.

    PubMed  Google Scholar 

  69. Tipper, S. P., Jordan, H., & Weaver, B. (1999). Scene-based and object-centered inhibition of return: Evidence for dual orienting mechanisms. Perception & Psychophysics, 61(1), 50–60.

    Google Scholar 

  70. Tipper, S. P., Weaver, B., & Watson, F. L. (1996). Inhibition of return to successively cued spatial locations: Commentary on Pratt and Abrams (1995). Journal of Experimental Psychology. Human Perception and Performance, 22(5), 1289–1293.

    PubMed  Google Scholar 

  71. Abrams, R. A., & Pratt, J. (1996). Spatially diffuse inhibition affects multiple locations: A reply to Tipper, Weaver, and Watson (1996). Journal of Experimental Psychology. Human Perception and Performance, 22(5), 1294–1298.

    PubMed  Google Scholar 

  72. Muller, H. J., & von Muhlenen, A. (1996). Attentional tracking and inhibition of return in dynamic displays. Perception & Psychophysics, 58(2), 224–249.

    Google Scholar 

  73. Fox, E., & de Fockert, J. W. (2001). Inhibitory effects of repeating color and shape: Inhibition of return or repetition blindness? Journal of Experimental Psychology. Human Perception and Performance, 27(4), 798–812.

    PubMed  Google Scholar 

  74. Abrams, R. A., & Pratt, J. (2000). Oculocentric coding of inhibited eye movements to recently attended locations. Journal of Experimental Psychology. Human Perception and Performance, 26(2), 776–788.

    PubMed  Google Scholar 

  75. Pratt, J., & Abrams, R. A. (1999). Inhibition of return in discrimination tasks. Journal of Experimental Psychology. Human Perception and Performance, 25(1), 229–242.

    PubMed  Google Scholar 

  76. Pratt, J., Abrams, R. A., & Chasteen, A. L. (1997). Initiation and inhibition of saccadic eye movements in younger and older adults: An analysis of the gap effect. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 52(2), P103–P107.

    PubMed  Google Scholar 

  77. Pratt, J., & Abrams, R. A. (1995). Inhibition of return to successively cued spatial locations. Journal of Experimental Psychology. Human Perception and Performance, 21(6), 1343–1353.

    PubMed  Google Scholar 

  78. Law, M. B., Pratt, J., & Abrams, R. A. (1995). Color-based inhibition of return. Perception & Psychophysics, 57(3), 402–408.

    Google Scholar 

  79. Welford, A. (1952). The psychological refractory period and the timing of high speed performance. British Journal of Psychology, 43, 2–19.

    Google Scholar 

  80. Pashler, H. (1992). Dual task interference and elementary mental mechanisms. In D. E. Meyer & S. Kornblum (Eds.), Attention and performance XIV. Cambridge: MIT Press.

    Google Scholar 

  81. Allport, D., Antonis, B., & Reynolds, P. (1972). On the division of attention: A disproof of the single-channel hypothesis. Quarterly Journal of Experimental Psychology, 24, 225–235.

    PubMed  Google Scholar 

  82. Bourke, P., Duncan, J., & Nimmo-Smith, I. (1996). A general factor involved in dual task performance decrement. Quarterly Journal of Experimental Psychology, 49A, 525–545.

    Google Scholar 

  83. Posner, M., & Boies, S. J. (1971). Components of attention. Psychological Review, 78, 391–408.

    Google Scholar 

  84. MacLeod, P. (1977). A dual task response modality effect: Support for the multi-processor models of attention. Quarterly Journal of Experimental Psychology, 29, 651–667.

    Google Scholar 

  85. MacLeod, P. (1978). Does probe RT measure central processing demand? Quarterly Journal of Experimental Psychology, 30, 83–89.

    Google Scholar 

  86. MacLeod, P., & Posner, M. I. (1984). Privledged loops from percept to act. In H. Bouma & D. G. Bouwhuis (Eds.), Attention and performance X. Hillsdale: Lawrence Erlbaum, Assoc.

    Google Scholar 

  87. Vallesi, A., Binns, M. A., & Shallice, T. (2008). An effect of spatial-temporal association of response codes: Understanding the cognitive representations of time. Cognition, 107(2), 501–527.

    PubMed  Google Scholar 

  88. Lien, M. C., & Proctor, R. W. (2002). Stimulus–response compatibility and psychological refractory period effects: Implications for response selection. Psychonomic Bulletin and Review, 9(2), 212–238.

    PubMed  Google Scholar 

  89. Valle-Inclan, F., Hackley, S. A., & De Labra, C. (2003). Stimulus–response compatibility between stimulated eye and response location: Implications for attentional accounts of the Simon effect. Psychological Research, 67(4), 240–243.

    PubMed  Google Scholar 

  90. Sato, T. R., & Schall, J. D. (2003). Effects of stimulus–response compatibility on neural selection in frontal eye field. Neuron, 38(4), 637–648.

    PubMed  Google Scholar 

  91. Rakitin, B. C. (2005). The effects of spatial stimulus–response compatibility on choice time production accuracy and variability. Journal of Experimental Psychology. Human Perception and Performance, 31(4), 685–702.

    PubMed  Google Scholar 

  92. Mattson, P. S., & Fournier, L. R. (2008). An action sequence held in memory can interfere with response selection of a target stimulus, but does not interfere with response activation of noise stimuli. Memory and Cognition, 36(7), 1236–1247.

    PubMed  Google Scholar 

  93. Bien, N., Roebroeck, A., Goebel, R., & Sack, A. T. (2009). The brain’s intention to imitate: The neurobiology of intentional versus automatic imitation. Cerebral Cortex, 19(10), 2338–2351.

    PubMed  Google Scholar 

  94. Bratzke, D., Rolke, B., & Ulrich, R. (2009). The source of execution-related dual-task interference: Motor bottleneck or response monitoring? Journal of Experimental Psychology. Human Perception and Performance, 35(5), 1413–1426.

    PubMed  Google Scholar 

  95. Yong-Liang, G., Robaey, P., Karayanidis, F., Bourassa, M., Pelletier, G., & Geoffroy, G. (2000). Stimulus–response incompatibility effects on event-related potentials in children with attention-deficit hyperactivity disorder. Brain and Cognition, 43(1–3), 211–215.

    PubMed  Google Scholar 

  96. Shiu, L. P., & Kornblum, S. (1999). Stimulus–response compatibility effects in go-no-go tasks: A dimensional overlap account. Perception & Psychophysics, 61(8), 1613–1623.

    Google Scholar 

  97. Eimer, M. (1995). Stimulus–response compatibility and automatic response activation: Evidence from psychophysiological studies. Journal of Experimental Psychology. Human Perception and Performance, 21(4), 837–854.

    PubMed  Google Scholar 

  98. Weeks, D. J., Proctor, R. W., & Beyak, B. (1995). Stimulus–response compatibility for vertically oriented stimuli and horizontally oriented responses: Evidence for spatial coding. The Quarterly Journal of Experimental Psychology. A, 48(2), 367–383.

    Google Scholar 

  99. Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus–response compatibility—a model and taxonomy. Psychological Review, 97(2), 253–270.

    PubMed  Google Scholar 

  100. Ehrenstein, W. H., Schroeder-Heister, P., & Heister, G. (1989). Spatial S-R compatibility with orthogonal stimulus–response relationship. Perception & Psychophysics, 45(3), 215–220.

    Google Scholar 

  101. Heister, G., & Schroeder-Heister, P. (1985). S-R compatibility effect or cerebral laterality effect? Comments on a controversy. Neuropsychologia, 23(3), 427–430.

    PubMed  Google Scholar 

  102. Yong-Liang, G., Robaey, P., Karayanidis, F., Bourassa, M., Pelletier, G., & Geoffroy, G. (2000). ERPs and behavioral inhibition in a Go/No-go task in children with attention-deficit hyperactivity disorder. Brain and Cognition, 43(1–3), 215–220.

    PubMed  Google Scholar 

  103. Beste, C., Saft, C., Andrich, J., Gold, R., & Falkenstein, M. (2008). Stimulus–response compatibility in Huntington’s disease: A cognitive-neurophysiological analysis. Journal of Neurophysiology, 99(3), 1213–1223.

    PubMed  Google Scholar 

  104. Huizenga, H. M., van Bers, B. M., Plat, J., van den Wildenberg, W. P., & van der Molen, M. W. (2009). Task complexity enhances response inhibition deficits in childhood and adolescent attention-deficit/hyperactivity disorder: A meta-regression analysis. Biological Psychiatry, 65(1), 39–45.

    PubMed  Google Scholar 

  105. Elvevag, B., Weinberger, D. R., Suter, J. C., & Goldberg, T. E. (2000). Continuous performance test and schizophrenia: A test of stimulus–response compatibility, working memory, response readiness, or none of the above? The American Journal of Psychiatry, 157(5), 772–780.

    PubMed  Google Scholar 

  106. Verfaellie, M., Bowers, D., & Heilman, K. M. (1988). Attentional factors in the occurrence of stimulus–response compatibility effects. Neuropsychologia, 26(3), 435–444.

    PubMed  Google Scholar 

  107. Broadbent, D. E. (1958). Perception and communication. London: Pergamon Press.

    Google Scholar 

  108. Welford, A. (1967). Single channel operation in the brain. Acta Psychologia., 27, 5–22.

    Google Scholar 

  109. Broadbent, D. E., & Broadbent, M. H. (1987). From detection to identification: Response to multiple targets in rapid serial visual presentation. Perception & Psychophysics, 42(2), 105–113.

    Google Scholar 

  110. Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology. Human Perception and Performance, 18(3), 849–860.

    PubMed  Google Scholar 

  111. Shapiro, K. L., Raymond, J. E., & Arnell, K. M. (1994). Attention to visual pattern information produces the attentional blink in rapid serial visual presentation. Journal of Experimental Psychology. Human Perception and Performance, 20(2), 357–371.

    PubMed  Google Scholar 

  112. Chun, M. M. (1997). Temporal binding errors are redistributed by the attentional blink. Perception & Psychophysics, 59(8), 1191–1199.

    Google Scholar 

  113. Chun, M. M., & Potter, M. C. (1995). A two-stage model for multiple target detection in rapid serial visual presentation. Journal of Experimental Psychology. Human Perception and Performance, 21(1), 109–127.

    PubMed  Google Scholar 

  114. Awh, E., Serences, J., Laurey, P., Dhaliwal, H., van der Jagt, T., & Dassonville, P. (2004). Evidence against a central bottleneck during the attentional blink: Multiple channels for configural and featural processing. Cognitive Psychology, 48(1), 95–126.

    PubMed  Google Scholar 

  115. Landau, A. N., & Bentin, S. (2008). Attentional and perceptual factors affecting the attentional blink for faces and objects. Journal of Experimental Psychology. Human Perception and Performance, 34(4), 818–830.

    PubMed  Google Scholar 

  116. Arnell, K. M., & Duncan, J. (2002). Separate and shared sources of dual-task cost in stimulus identification and response selection. Cognitive Psychology, 44(2), 105–147.

    PubMed  Google Scholar 

  117. Pratt, J., & Hommel, B. (2003). Symbolic control of visual attention: The role of working memory and attentional control settings. Journal of Experimental Psychology. Human Perception and Performance, 29(5), 835–845.

    PubMed  Google Scholar 

  118. Hommel, B., Pratt, J., Colzato, L., & Godijn, R. (2001). Symbolic control of visual attention. Psychological Science, 12(5), 360–365.

    PubMed  Google Scholar 

  119. Gibson, B. S., Scheutz, M., & Davis, G. J. (2009). Symbolic control of visual attention: Semantic constraints on the spatial distribution of attention. Attention, Perception, & Psychophysics, 71(2), 363–374.

    Google Scholar 

  120. Herrera, A., & Macizo, P. (2008). Cross-notational semantic priming between symbolic and nonsymbolic numerosity. Quarterly Journal of Experimental Psychology, 61(10), 1538–1552.

    Google Scholar 

  121. Roelofs, A. (2008). Dynamics of the attentional control of word retrieval: Analyses of response time distributions. Journal of Experimental Psychology. General, 137(2), 303–323.

    PubMed  Google Scholar 

  122. Shaki, S., & Algom, D. (2002). The locus and nature of semantic congruity in symbolic comparison: Evidence from the Stroop effect. Memory and Cognition, 30(1), 3–17.

    PubMed  Google Scholar 

  123. Petrusic, W. M. (1992). Semantic congruity effects and theories of the comparison process. Journal of Experimental Psychology. Human Perception and Performance, 18(4), 962–986.

    PubMed  Google Scholar 

  124. Kingstone, A. (2009). Taking a real look at social attention. Current Opinion in Neurobiology, 19(1), 52–56.

    PubMed  Google Scholar 

  125. Kuhn, G., & Kingstone, A. (2009). Look away! Eyes and arrows engage oculomotor responses automatically. Attention, Perception, & Psychophysics, 71(2), 314–327.

    Google Scholar 

  126. Kingstone, A., Tipper, C., Ristic, J., & Ngan, E. (2004). The eyes have it!: An fMRI investigation. Brain and Cognition, 55(2), 269–271.

    PubMed  Google Scholar 

  127. Friesen, C. K., & Kingstone, A. (2003). Covert and overt orienting to gaze direction cues and the effects of fixation offset. Neuroreport, 14(3), 489–493.

    PubMed  Google Scholar 

  128. Friesen, C. K., & Kingstone, A. (2003). Abrupt onsets and gaze direction cues trigger independent reflexive attentional effects. Cognition, 87(1), B1–B10.

    PubMed  Google Scholar 

  129. Broadbent, D. E. (1952). Listening to one of two synchronous messages. Journal of Experimental Psychology., 44, 51–55.

    PubMed  Google Scholar 

  130. Broadbent, D. E. (1971). Decision and stress. London: Academic.

    Google Scholar 

  131. Scharf, B. (1998). Auditory attention. In H. Pashler (Ed.), Attention. Hove: Psychology Press.

    Google Scholar 

  132. Tanner, W., & Norman, R. Z. (1954). The human use of information: Signal detection for the case of unknown signal parameters. New York: Institute of Radio Engineers.

    Google Scholar 

  133. Scharf, B., Quigley, S., Aoki, C., Peachey, N., & Reeves, A. (1987). Focused auditory attention and frequency selectivity. Perception & Psychophysics, 42(3), 215–223.

    Google Scholar 

  134. Dai, H. P., Scharf, B., & Buus, S. (1991). Effective attenuation of signals in noise under focused attention. Journal of the Acoustical Society of America, 89(6), 2837–2842.

    PubMed  Google Scholar 

  135. Dai, H., & Wright, B. A. (1999). Predicting the detectability of tones with unexpected durations. Journal of the Acoustical Society of America, 105(3), 2043–2046.

    PubMed  Google Scholar 

  136. White, L. J., & Carlyon, R. P. (1997). Detection of signals having expected and unexpected temporal structures. Hearing Research, 112(1–2), 141–146.

    PubMed  Google Scholar 

  137. Wright, B. A., & Dai, H. (1994). Detection of unexpected tones in gated and continuous maskers. Journal of the Acoustical Society of America, 95(2), 939–948.

    PubMed  Google Scholar 

  138. Wright, B. A., & Dai, H. (1994). Detection of unexpected tones with short and long durations. Journal of the Acoustical Society of America, 95(2), 931–938.

    PubMed  Google Scholar 

  139. Wright, B. A., & Dai, H. (1998). Detection of sinusoidal amplitude modulation at unexpected rates. Journal of the Acoustical Society of America, 104(5), 2991–2996.

    PubMed  Google Scholar 

  140. Bregman, A. S., Levitan, R., & Liao, C. (1990). Fusion of auditory components: Effects of the frequency of amplitude modulation. Perception & Psychophysics, 47(1), 68–73.

    Google Scholar 

  141. Bregman, A. S., Liao, C., & Levitan, R. (1990). Auditory grouping based on fundamental frequency and formant peak frequency. Canadian Journal of Psychology, 44(3), 400–413.

    PubMed  Google Scholar 

  142. Tougas, Y., & Bregman, A. S. (1990). Auditory streaming and the continuity illusion. Perception & Psychophysics, 47(2), 121–126.

    Google Scholar 

  143. Carlyon, R. P., Cusack, R., Foxton, J. M., & Robertson, I. H. (2001). Effects of attention and unilateral neglect on auditory stream segregation. Journal of Experimental Psychology. Human Perception and Performance, 27(1), 115–127.

    PubMed  Google Scholar 

  144. Macken, W. J., Tremblay, S., Houghton, R. J., Nicholls, A. P., & Jones, D. M. (2003). Does auditory streaming require attention? Evidence from attentional selectivity in short-term memory. Journal of Experimental Psychology. Human Perception and Performance, 29(1), 43–51.

    PubMed  Google Scholar 

  145. Macken, W. J., Phelps, F. G., & Jones, D. M. (2009). What causes auditory distraction? Psychonomic Bulletin and Review, 16(1), 139–144.

    PubMed  Google Scholar 

  146. Driver, J., & Spence, C. J. (1994). Spatial synergies between auditory and visual attention. In C. Umilto & M. Moscovitch (Eds.), Attention and performance XV (pp. 311–331). Cambridge: MIT Press.

    Google Scholar 

  147. Buchtel, H. A., & Butter, C. M. (1988). Spatial attentional shifts: Implications for the role of polysensory mechanisms. Neuropsychologia, 26(4), 499–509.

    PubMed  Google Scholar 

  148. Buchtel, H. A., Butter, C. M., & Ayvasik, B. (1996). Effects of stimulus source and intensity on covert orientation to auditory stimuli. Neuropsychologia, 34(10), 979–985.

    PubMed  Google Scholar 

  149. Butter, C. M., Buchtel, H. A., & Santucci, R. (1989). Spatial attentional shifts: Further evidence for the role of polysensory mechanisms using visual and tactile stimuli. Neuropsychologia, 27(10), 1231–1240.

    PubMed  Google Scholar 

  150. Luh, K. E., Butter, C. M., & Buchtel, H. A. (1986). Impairments in orienting to visual stimuli in monkeys following unilateral lesions of the superior sulcal polysensory cortex. Neuropsychologia, 24(4), 461–470.

    PubMed  Google Scholar 

  151. Quinlan, P. T., & Bailey, P. J. (1995). An examination of attentional control in the auditory modality: Further evidence for auditory orienting. Perception & Psychophysics, 57(5), 614–628.

    Google Scholar 

  152. Arbogast, T. L., & Kidd, G., Jr. (2000). Evidence for spatial tuning in informational masking using the probe-signal method. Journal of the Acoustical Society of America, 108(4), 1803–1810.

    PubMed  Google Scholar 

  153. Arbogast, T. L., Mason, C. R., & Kidd, G., Jr. (2002). The effect of spatial separation on informational and energetic masking of speech. Journal of the Acoustical Society of America, 112(5 Pt 1), 2086–2098.

    PubMed  Google Scholar 

  154. Arbogast, T. L., Mason, C. R., & Kidd, G., Jr. (2005). The effect of spatial separation on informational masking of speech in normal-hearing and hearing-impaired listeners. Journal of the Acoustical Society of America, 117(4 Pt 1), 2169–2180.

    PubMed  Google Scholar 

  155. Durlach, N. I., Mason, C. R., Kidd, G., Jr., Arbogast, T. L., Colburn, H. S., & Shinn-Cunningham, B. G. (2003). Note on informational masking. Journal of the Acoustical Society of America, 113(6), 2984–2987.

    PubMed  Google Scholar 

  156. Kidd, G., Jr., Arbogast, T. L., Mason, C. R., & Walsh, M. (2002). Informational masking in listeners with sensorineural hearing loss. Journal of the Association for Research in Otolaryngology, 3(2), 107–119.

    PubMed  Google Scholar 

  157. Kidd, G., Jr., Mason, C. R., & Arbogast, T. L. (2002). Similarity, uncertainty, and masking in the identification of nonspeech auditory patterns. Journal of the Acoustical Society of America, 111(3), 1367–1376.

    PubMed  Google Scholar 

  158. Kidd, G., Jr., Mason, C. R., Brughera, A., & Chiu, C. Y. (2003). Discriminating harmonicity. Journal of the Acoustical Society of America, 114(2), 967–977.

    PubMed  Google Scholar 

  159. Kidd, G., Jr., Mason, C. R., & Richards, V. M. (2003). Multiple bursts, multiple looks, and stream coherence in the release from informational masking. Journal of the Acoustical Society of America, 114(5), 2835–2845.

    PubMed  Google Scholar 

  160. Oxenham, A. J., Fligor, B. J., Mason, C. R., & Kidd, G., Jr. (2003). Informational masking and musical training. Journal of the Acoustical Society of America, 114(3), 1543–1549.

    PubMed  Google Scholar 

  161. Richards, V. M., Huang, R., & Kidd, G., Jr. (2004). Masker-first advantage for cues in informational masking. Journal of the Acoustical Society of America, 116(4 Pt 1), 2278–2288.

    PubMed  Google Scholar 

  162. Richards, V. M., Tang, Z., & Kidd, G. D., Jr. (2002). Informational masking with small set sizes. Journal of the Acoustical Society of America, 111(3), 1359–1366.

    PubMed  Google Scholar 

  163. Soto-Faraco, S., Morein-Zamir, S., & Kingstone, A. (2005). On audiovisual spatial synergy: The fragility of the phenomenon. Perception & Psychophysics, 67(3), 444–457.

    Google Scholar 

  164. Spence, C., Pavani, F., & Driver, J. (2004). Spatial constraints on visual-tactile cross-modal distractor congruency effects. Cognitive, Affective, & Behavioral Neuroscience, 4(2), 148–169.

    Google Scholar 

  165. Macaluso, E., George, N., Dolan, R., Spence, C., & Driver, J. (2004). Spatial and temporal factors during processing of audiovisual speech: A PET study. NeuroImage, 21(2), 725–732.

    PubMed  Google Scholar 

  166. Kennett, S., Spence, C., & Driver, J. (2002). Visuo-tactile links in covert exogenous spatial attention remap across changes in unseen hand posture. Perception & Psychophysics, 64(7), 1083–1094.

    Google Scholar 

  167. Amlot, R., Walker, R., Driver, J., & Spence, C. (2003). Multimodal visual-somatosensory integration in saccade generation. Neuropsychologia, 41(1), 1–15.

    PubMed  Google Scholar 

  168. Maravita, A., Spence, C., Kennett, S., & Driver, J. (2002). Tool-use changes multimodal spatial interactions between vision and touch in normal humans. Cognition, 83(2), B25–B34.

    PubMed  Google Scholar 

  169. Spence, C., Kettenmann, B., Kobal, G., & McGlone, F. P. (2000). Selective attention to the chemosensory modality. Perception & Psychophysics, 62(6), 1265–1271.

    Google Scholar 

  170. Ward, L. M., McDonald, J. J., & Lin, D. (2000). On asymmetries in cross-modal spatial attention orienting. Perception & Psychophysics, 62(6), 1258–1264.

    Google Scholar 

  171. Spence, C., Pavani, F., & Driver, J. (2000). Crossmodal links between vision and touch in covert endogenous spatial attention. Journal of Experimental Psychology. Human Perception and Performance, 26(4), 1298–1319.

    PubMed  Google Scholar 

  172. Spence, C., Ranson, J., & Driver, J. (2000). Cross-modal selective attention: On the difficulty of ignoring sounds at the locus of visual attention. Perception & Psychophysics, 62(2), 410–424.

    Google Scholar 

  173. Driver, J., & Spence, C. (1998). Cross-modal links in spatial attention. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353(1373), 1319–1331.

    PubMed  Google Scholar 

  174. Driver, J., & Spence, C. (1998). Crossmodal attention. Current Opinion in Neurobiology, 8(2), 245–253.

    PubMed  Google Scholar 

  175. Posner, M. I. (1989). Foundations of cognitive science. Cambridge: MIT Press.

    Google Scholar 

  176. Norman, D., & Shallice, T. (1986). Attention to action: Willed and automatic control of behaviour. In R. J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.), Consciousness and self-regulation. Advances in research and theory (pp. 1–18). New York: Plenum Press.

    Google Scholar 

  177. Norman, D., & Shallice, T. (1984). Attention to action: Willed and automatic control of behavior. In R. J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.), Consciousness and self-regulation (Vol. 4, pp. 3–16). New York: Plenum.

    Google Scholar 

  178. Bouquet, C. A., Bonnaud, V., & Gil, R. (2003). Investigation of supervisory attentional system functions in patients with Parkinson’s disease using the Hayling task. Journal of Clinical and Experimental Neuropsychology, 25(6), 751–760.

    PubMed  Google Scholar 

  179. Shallice, T., & Burgess, P. (1996). The domain of supervisory processes and temporal organization of behaviour. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 351(1346), 1405–1411; discussion 1411–1402.

    PubMed  Google Scholar 

  180. Fimm, B., Bartl, G., Zimmermann, P., & Wallesch, C. W. (1994). Different mechanisms underly shifting set on external and internal cues in Parkinson’s disease. Brain and Cognition, 25(2), 287–304.

    PubMed  Google Scholar 

  181. Brown, R. G., & Marsden, C. D. (1988). Internal versus external cues and the control of attention in Parkinson’s disease. Brain, 111(Pt 2), 323–345.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cohen, R.A. (2014). Cognitive Science of Attention: Current Concepts and Approaches. In: The Neuropsychology of Attention. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72639-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-72639-7_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-72638-0

  • Online ISBN: 978-0-387-72639-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics