Skip to main content

Structures and Functions of the Auditory Nervous System ofFishes

  • Chapter
Fish Bioacoustics

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 32))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian ED, Craik KW, Sturdy RS (1938) The electrical responses of the auditory mechanism of cold blooded vertebrates. Proc Roy Soc B 125:435–455.

    Google Scholar 

  • Bass AH, Bodnar DA, Marchaterre MA (2000) Midbrain acoustic circuitry in a vocalizing fish. J Comp Neurol 419:505–531.

    PubMed  CAS  Google Scholar 

  • Bass AH, Bodnar DA, Marchaterre MA (2001) Acoustic nuclei in the medulla and midbrain of the vocalizing gulf toadfish (Opsanus beta). Brain Behav Evol 57:63–79.

    PubMed  CAS  Google Scholar 

  • Blaxter, JHS, Denton EJ, Gray JAB (1981) Acousticolateralis system in clupeid fishes. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 39–56.

    Google Scholar 

  • Bodnar DA, Bass AH (1997) Temporal coding of concurrent acoustic signals in auditory midbrain. J Neurosci 17:7553–7564.

    PubMed  CAS  Google Scholar 

  • Bodnar DA, Bass AH (1999) A midbrain combinatorial code for temporal and spectral information in concurrent acoustic signals. J Neurophysiol 81:552–563.

    PubMed  CAS  Google Scholar 

  • Braford MR, McCormick CA (1979) Some connections of the torus semicircularis in the bowfin, Amia calva: a horseradish peroxidase study. Soc Neurosci Abstr 5:193.

    Google Scholar 

  • Braford MR, McCormick CA (1994) Organization of inner ear endorgan projections in the goldfish, Carassius auratus. Brain Behav Evol 43:189–205.

    PubMed  Google Scholar 

  • Braun C, Coombs S, Fay R (2002) What is the nature of multisensory interaction between octavolateralis sub-systems? Brain Behav Evol 59:162–176.

    PubMed  Google Scholar 

  • Capranica RR, Moffat AJM (1980) Nonlinear properties of the peripheral auditory system of anirans. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 139–165.

    Google Scholar 

  • Carr CE, Code RA (2000) The central auditory system of reptiles and birds. In: Dooling RJ, Fay RR, Popper AN (eds) Comparative Hearing: Birds and Reptiles. New York: Springer-Verlag, pp. 197–248.

    Google Scholar 

  • Coombs S, Fay RR (1985) Adaptation effects on amplitude modulation detection: behavioral and neurophysiological assessment in the goldfish auditory system. Hear Res 19:57–71.

    PubMed  CAS  Google Scholar 

  • Coombs SL, Fay RR (1987) Response dynamics of goldfish saccular fibers: effects of stimulus frequency and intensity on fibers with different tuning, sensitivity, and spontaneous activity. J Acoust Soc Am 81:1025–1035.

    PubMed  CAS  Google Scholar 

  • Coombs S, New JG (2002) Preface to Special Issue of Brain Behav Evol Sens Integr 59:159–161.

    Google Scholar 

  • Coombs S, Gorner P, Munz H (1989) A brief overview of the mechanosensory lateral line system and the contributions to this volume. In: Coombs S, Goner P, Munz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York, Springer-Verlag, pp. 3–5.

    Google Scholar 

  • Corwin JT (1981) Peripheral auditory physiology in the lemon shark: evidence of parallel otolithic and non-otolithic sound detection. J Comp Physiol 142:370–390.

    Google Scholar 

  • Corwin JT (1989) Functional anatomy of the auditory system in sharks and rays. J Exp Zool Suppl 2:62–74.

    Google Scholar 

  • Crawford AC, Fettiplace R (1981) An electrical tuning mechanism in turtle cochlear hair cells. J Physiol 312:377–412.

    PubMed  CAS  Google Scholar 

  • Crawford JD (1993) Central auditory neurophysiology of a sound producing fish: the mesencephalon of Pollimyrus isidori (Mormyridae). J Comp Physiol A 172:139–152.

    PubMed  CAS  Google Scholar 

  • de Vries HL (1950) The mechanics of labyrinth otoliths. Acta Oto-Laryngol 38:262–273.

    Google Scholar 

  • Dijkgraaf S (1960) Hearing in bony fishes. Proc Roy Soc B 152:51–54.

    CAS  Google Scholar 

  • Echteler SE (1984) Connections of the auditory midbrain in a teleost fish, Cyprinus carpio. J Comp Neurol 230:536–551.

    PubMed  CAS  Google Scholar 

  • Echteler SE (1985a) Organization of central auditory pathways in a teleost fish, Cyprinus carpio. J Comp Physiol A 156:267–280.

    Google Scholar 

  • Echteler SE (1985b) Tonotopic organization in the midbrain of a teleost fish. Barin Res 338:387–391.

    CAS  Google Scholar 

  • Edds-Walton PL (1998a) Projections of primary afferents from regions of the saccule in toadfish (Opsanus tau). Hear Res 115:45–60.

    CAS  Google Scholar 

  • Edds-Walton PL (1998b) Anatomical evidence for binaural processing in the descending octaval nucleus of the toadfish (Opsanus tau). Hear Res 123:41–54.

    CAS  Google Scholar 

  • Edds-Walton P, Fay RR (2003) Directional selectivity and frequency tuning of midbrain cells in the oyster toadfish, Opsanus tau. J Comp Physiol 189:527–543.

    CAS  Google Scholar 

  • Edds-Walton PL, Fay RR (2005a) Projections to bimodal sites in the torus semicircularis of the toadfish, Opsanus tau. Brain Behav Evol 66:73–87.

    Google Scholar 

  • Edds-Walton PL, Fay RR (2005b) Sharpening of directional responses along the auditory pathway of the oyster toadfish, Opsanus tau. J Comp Physiol 191:1079–1086.

    Google Scholar 

  • Edds-Walton PL, Popper AN (2000) Dendritic arbors on the saccule and lagena in the ear of the goldfish, Carassius auratus. Hear Res 141:229–242.

    PubMed  CAS  Google Scholar 

  • Edds-Walton PL, Fay RR, Highstein SM (1999) Dendritic arbors and central projections of auditory fibers from the saccule of the toadfish (Opsanus tau). J Comp Neurol 411:212–238.

    PubMed  CAS  Google Scholar 

  • Enger PS (1963) Masking of auditory responses in the medulla oblongata of goldfish. J Exp Biol 59:415–424.

    Google Scholar 

  • Enger PS (1967) Hearing in herring. Comp Biochem Physiol 22:527–538.

    PubMed  CAS  Google Scholar 

  • Fay RR (1970) Auditory frequency discrimination in the goldfish (Carassius auratus). J Comp Physiol Psychol 73:175–180.

    Google Scholar 

  • Fay RR (1978a) Coding of information in single auditory-nerve fibers of the goldfish. J Acoust Soc Am 63:136–146.

    CAS  Google Scholar 

  • Fay RR (1978b) Phase locking in goldfish saccular nerve fibres accounts for frequency discrimination capacities. Nature 275:320–322.

    CAS  Google Scholar 

  • Fay RR (1980) Psychophysics and neurophysiology of temporal factors in hearing by the goldfish: amplitude modulation detection. J Neurophysiol 44:312–332.

    PubMed  CAS  Google Scholar 

  • Fay RR (1981) Coding of acoustic information in the eighth nerve. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 189–219.

    Google Scholar 

  • Fay RR (1984) The goldfish ear codes the axis of acoustic particle motion in three dimensions. Science 225:951–954.

    PubMed  CAS  Google Scholar 

  • Fay RR (1985) Sound intensity processing by the goldfish. J Acoust Soc Am 78:1296–1309.

    PubMed  CAS  Google Scholar 

  • Fay RR (1990) Suppression and excitation in auditory nerve fibers of the goldfish, Carassius auratus. Hear Res 48:93–110.

    PubMed  CAS  Google Scholar 

  • Fay RR (1991) Masking and suppression in auditory nerve fibers of the goldfish, (Carassius auratus). Hear Res 55:177–187.

    PubMed  CAS  Google Scholar 

  • Fay RR (1995) Physiology of primary saccular afferents of goldfish: implications for Mauthner cell response. Brain Behav Evol 46:141–150.

    PubMed  CAS  Google Scholar 

  • Fay RR (1997) Frequency selectivity of saccular afferents of the goldfish revealed by revcor analysis. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR, E. Hecht-Poinar E (eds) Diversity in Auditory Mechanics. Singapore: World Scientific Publishers, , pp. 69–75.

    Google Scholar 

  • Fay RR, Coombs S (1983) Neural mechanisms in sound detection and temporal summation. Hear Res 10:69–92.

    PubMed  CAS  Google Scholar 

  • Fay RR, Edds-Walton PL (1997a) Directional response properties of saccular afferents of the toadfish, Opsanus tau. Hear Res 111:1–21.

    CAS  Google Scholar 

  • Fay RR, Edds-Walton PL (1997b) Diversity in frequency response properties of saccular afferents of the toadfish (Opsanus tau). Hear Res 113:235–246.

    CAS  Google Scholar 

  • Fay RR, Edds-Walton PL (1999) Sharpening of directional auditory responses in the descending octaval nucleus of the toadfish (Opsanus tau). Biol Bull 197:240–241.

    PubMed  CAS  Google Scholar 

  • Fay RR, Edds-Walton PL (2001) Bimodal units in the torus semicircularis of the toadfish (Opsanus tau). Biol Bull 201:280–281.

    PubMed  CAS  Google Scholar 

  • Fay RR, Edds-Walton P (2003) Directional selectivity and frequency tuning of midbrain cells in the oyster toadfish, Opsanus tau. J Comp Physiol A 189:527–543.

    Google Scholar 

  • Fay RR, Edds-Walton PL (2005) Sharpening of directional responses along the auditory pathway of the oyster toadfish, Opsanus tau. J Comp Physiol 191:1079–1086.

    Google Scholar 

  • Fay RR, Olsho I (1979) Discharge patterns of lagenar and saccular neurons of the goldfish eighth nerve: displacement sensitivity and directional characteristics. Comp Biochem Physiol 62:377–386.

    Google Scholar 

  • Fay RR, Popper AN (1999) The auditory periphery in fishes. In: Fay RR, Popper AN (eds) Comparative Hearing: Fish and Amphibians. New York: Springer-Verlag, pp. 43–100.

    Google Scholar 

  • Fay RR, Ream TJ (1986) Acoustic response and tuning in saccular nerve fibers of the goldfish (Carassius auratus). J Acoust Soc Am 79, 1883–1895.

    PubMed  CAS  Google Scholar 

  • Fay RR, Ream TJ (1992) The effects of temperature change and transient hypoxia on auditory nerve response in the goldfish (Carassius auratus). Hear Res 58:9–18.

    PubMed  CAS  Google Scholar 

  • Fay RR, Hillery CM, Bolan K (1982) Representation of sound pressure and particle motion information in the midbrain of the goldfish. Comp Biochem Physiol 71:181–191.

    CAS  Google Scholar 

  • Fay RR, Yost WA, Coombs S (1983) Psychophysics and neurophysiology of repetition noise processing in a vertebrate auditory system. Hear Res 12:31–55

    PubMed  CAS  Google Scholar 

  • Fay RR, Chronopoulos M, Patterson RD (1996) The sound of a sinusoid: perception and neural representations in the goldfish (Carassius auratus). Audit Neurosci 2:377–392.

    Google Scholar 

  • Furukawa T (1981) Effects of efferent stimulation on the saccule of goldfish. J Physiol 315:203–215.

    PubMed  CAS  Google Scholar 

  • Furukawa T (1986) Sound reception and synaptic transmission in goldfish hair cells. Jpn J Physiol 36:1059–1077.

    PubMed  CAS  Google Scholar 

  • Furukawa T, Ishii T (1967) Neurophysiological studies on hearing in the goldfish. J Neurophysiol 30:1337–1403.

    Google Scholar 

  • Furukuwa T, Matsuura S (1978) Adaptive rundown of excitatory post-synaptic potentials at synapses between hair cells and eight nerve fibres in the goldfish. J Physiol 276:193–209.

    Google Scholar 

  • Furukawa T, Kuno M, Matsuura S (1982) Quantal analysis of a decremental response at hair cell-afferent fibre synapses in the goldfish sacculus. J Physiol 322:181–195.

    PubMed  CAS  Google Scholar 

  • Grose B, Carr CE, Casseday JH, Fritzsch B, Koppl C (2004) The evolution of central pathways and their neural processing patterns. In: Manley GA, Popper AN, Fay RR (eds) Evolution of the Vertebrate Auditory System. New York: Springer-Verlag, pp. 289–359.

    Google Scholar 

  • Grözinger B (1967) Elektro-physiologische Untersuchugen an der Hirbahn der Schleie (Tinca tinca [L.]). Z Vergl Physiol 57:44–76.

    Google Scholar 

  • Hawkins AD, Horner K (1981) Directional characteristics of primary auditory neurons from the cod ear. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Sprenger-Verlag, pp. 311–328.

    Google Scholar 

  • Hawkins AD, Sand O (1977) Directional hearing in the median vertical plane by the cod. J Comp Physiol 122:1–8.

    Google Scholar 

  • Henry KR, Lewis ER (1992) One-tone suppression in the cochlear nerve of the gerbil. Hear Res 63:1–6.

    PubMed  CAS  Google Scholar 

  • Highstein SM, Baker R (1985) Action of the efferent vestibular system on primary afferents in the toadfish, Opsanus tau. J Neurophysiol 54:370–384.

    PubMed  CAS  Google Scholar 

  • Highstein SM, Baker R (1986) Organization of the efferent vestibular nuclei and nerves of the toadfish, Opsanus tau. J Comp Neurol 243:309–325.

    PubMed  CAS  Google Scholar 

  • Highstein SM, Kitch R, Carey J, Baker R (1992) Anatomical organization of the brain stem octavolateralis area of the oyster toadfish, Opsanus tau. J Comp Neurol 319:501–518.

    PubMed  CAS  Google Scholar 

  • Hill KG, Stange G, Gummer AW, Mo J (1989) A model proposing synaptic and extrasynaptic influences on the responses of cochlear nerve fibers. Hear Res 39:75–90.

    PubMed  CAS  Google Scholar 

  • Holton T, Weiss T (1983) Frequency selectivity of hair cells and nerve fibers in the alligator lizard cochlea. J Physiol 345:241–260.

    PubMed  CAS  Google Scholar 

  • Horner K, Sand O, Enger PS (1980) Binaural interaction in the cod. J Exp Biol 85:323–331.

    Google Scholar 

  • Horner K, Hawkins AD, Fraser PJ (1981) Frequency characteristics of primary auditory neurons from the ear of the cod, Gadus morhua. In Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 223–241.

    Google Scholar 

  • Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407–2411.

    PubMed  CAS  Google Scholar 

  • Ishii Y, Matsuura S, Furukawa T (1971) Quantal nature of transmission at the synapse between hair cells and eighth nerve fibers. Jpn J Physiol 21:79–89.

    PubMed  CAS  Google Scholar 

  • Kenyon TN, Ladich F, Yan HY (1998) A comparative study of hearing ability in fishes: the auditory brain stem response approach. J Comp Physiol A 182:307–318.

    PubMed  CAS  Google Scholar 

  • Knudsen EI (1977) Distinct auditory and lateral line nuclei in the midbrain of catfishes. J Comp Neurol 173:417–431.

    PubMed  CAS  Google Scholar 

  • Köppl C, Manley G (1992) Functional consequences of morphological trends in the evolution of lizard hearing organs. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 489–510.

    Google Scholar 

  • Koslowski J, Crawford JD (1998) Functional neuroanatomy of auditory pathways in the sound-producing fish Pollimyrus. J Comp Neurol 401:227–252.

    Google Scholar 

  • Koslowski J, Crawford JD (2000) Transformations of an auditory temporal code in the medulla of a sound-producing fish. J Neurosci 20:2400–2408.

    Google Scholar 

  • Lanford PJ, Popper AN (1996) Novel afferent terminal structure in the crista ampullaris of the goldfish, Carassius auratus. J Comp Neurol 366:572–579.

    PubMed  CAS  Google Scholar 

  • Lanford PJ, Popper AN, Platt C (2000) Structure and function in the saccule of the goldfish (Carassius auratus): a model of diversity in the non-amniote ear. Hear Res 143:1–13.

    PubMed  CAS  Google Scholar 

  • Large EW, Crawford JD (2002) Auditory temporal computation: interval selectivity based on post-inhibitory rebound. J Comput Neurosci 13:125–42.

    PubMed  Google Scholar 

  • Lewis ER (1986) Adaptation, suppression, and tuning in amphibian acoustical fibers. In: Moore BCJ, Patterson R (eds) Auditory Frequency Selectivity. New York: Plenum, pp. 129–136.

    Google Scholar 

  • Lewis ER (1992) Convergence and design in vertebrate acoustic sensors. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 163–184.

    Google Scholar 

  • Lewis ER, Fay RR (2004) Environmental variables and the fundamental nature of hearing. In: Manley G, Popper AN, Fay RR (eds) Evolution of the Vertebrate Auditory System. New York: Springer-Verlag, pp. 27–54.

    Google Scholar 

  • Lowenstein O, Roberts TDM (1951) The localization and analysis of the responses to vibration from the isolated elasmobranch labyrinth: a contribution to the problem of the evolution of hearing in vertebrates. J Physiol (Lond) 114:471–489.

    CAS  Google Scholar 

  • Lu Z and Fay RR (1993) Acoustic response properties of single units in the torus semicircularis of the goldfish, Carassius auratus. J Comp Physiol 173:33–48.

    Google Scholar 

  • Lu Z, Fay RR (1996) Two-tone interaction in auditory nerve fibers and midbrain neurons of the goldfish, Carassius auratus. Audit Neurosci 2:257–273.

    Google Scholar 

  • Lu Z, Popper AN (1998). Neural response directionality correlates of hair cell orientation in a teleost fish. J. Comp. Physiol. A 187:453–465.

    Google Scholar 

  • Lu Z, Song J, Popper AN (1998) Encoding of acoustic directional information by saccular afferents of the sleeper goby Dormitator latifrons. J Comp Physiol A 182:805–815.

    PubMed  CAS  Google Scholar 

  • Lu Z, Xu Z, Buchser WH (2003) Acoustic response properties of lagenar nerve fibers in the sleeper goby, Dormitator latifrons. J Comp Physiol A 189:889–905.

    CAS  Google Scholar 

  • Ma W-L, Fay RR (2002) Neural representations of the axis of acoustic particle motion in the auditory midbrain of the goldfish, Carassius auratus. J Comp Physiol [A] 188:301–313.

    Google Scholar 

  • Manley G (1990) Peripheral Hearing Mechanisms in Reptiles and Birds. Berlin: Springer-Verlag.

    Google Scholar 

  • Manley G, Gleich O (1984) Avian primary auditory neurons. The relationship between characteristic frequency and preferred intervals. Naturwissenschaften 71:592–594.

    PubMed  CAS  Google Scholar 

  • Mann DA, Lu Z, Hasting MC, Popper AN (1998) Detection of ultrasonic tones and simulated dolphin echolocation clicks by a teleost fish, the American shad (Alosa sapidissima). J Acoust Soc Am 104:562–568.

    PubMed  CAS  Google Scholar 

  • Mann DA, Higgs DM, Tavolga WN, Souza MJ, Popper AN (2001) Ultrasound detection by clupeiform fishes. J Acoust Soc Am 109:3048–3054.

    PubMed  CAS  Google Scholar 

  • McCormick CA (1981) Central projections of the lateral line and eighth nerves in the bowfin, Amia calva. J Comp Neurol 197:1–15.

    PubMed  CAS  Google Scholar 

  • McCormick CA (1982) The organization of the octavolateralis area in actinopterygian fishes: a new interpretation. J Morphol 171:159–181.

    Google Scholar 

  • McCormick CA (1983) Central connections of the octavolateralis nerves in the pike cichlid, Crenicichla lepidota. Brain Res 265:177–185.

    PubMed  CAS  Google Scholar 

  • McCormick CA (1992) Evolution of central auditory pathways in anamniotes. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 323–350.

    Google Scholar 

  • McCormick CA (1997) Organization and connections of octaval and lateral line centers in the medulla of a clupeid, Dorosoma cepedianum. Hear Res 110:39–60.

    PubMed  CAS  Google Scholar 

  • McCormick CA (1999) Anatomy of the central auditory pathways of fish and amphibians. In: Fay RR, Popper AN (eds) Comparative Hearing: Fish and Amphibians. New York: Springer-Verlag, pp. 155–217.

    Google Scholar 

  • McCormick CA, Braford MR Jr (1988) Central connections of the octavolateralis system. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 733–756.

    Google Scholar 

  • McCormick CA, Braford MR Jr (1993) The primary octaval nuclei and inner ear afferent projections in the otophysan Ictalurus punctatus. Brain Behav Evol 42:48–68.

    PubMed  CAS  Google Scholar 

  • McCormick CA, Braford MR Jr (1994) Organization of inner ear endorgan projections in the goldfish, Carassius auratus. Brain Behav Evol 43:189–205.

    PubMed  CAS  Google Scholar 

  • McCormick CA, Hernandez DV (1996) Connections of octaval and lateral line nuclei in the medulla of the goldfish, including the cytoarchitecture of the secondary octaval population in goldfish and catfish. Brain Behav Ecol 47:113–137.

    CAS  Google Scholar 

  • McKibben JR, Bass AH (1999) Peripheral encoding of behaviorally relevant acoustic signals in a vocal fish: single tones. J Comp Physiol A 184:563–576.

    PubMed  CAS  Google Scholar 

  • Meredith GE, Roberts BL, Maslam S (1987) Distribution of afferent fibers from end organs in the ear and lateral line in the European eel. J Comp Neurol 265:507–520.

    PubMed  CAS  Google Scholar 

  • Moeng R, Popper AN (1984) Auditory responses of saccular neurons of the catfish, Ictalurus punctatus. J Comp Physiol 155:615–624.

    Google Scholar 

  • Montgomery JC, Coombs S, Conley RA, Bodznick D (1995) Hindbrain sensory processing in lateral line, electrosensory, and auditory systems: a comparative overview of anatomical and functional similarities. Audit Neurosci 1:207–231.

    Google Scholar 

  • Moulton JM, Dixon RH (1967) Directional hearing in fishes. In: Tavolga WN (ed) Marine Bio-acoustics, Vol. II. New York: Pergamon Press, pp. 187–228.

    Google Scholar 

  • Nelson ME, MacIver MA, Coombs S (2002) Modeling electrosensory and mechanosensory images during the predatory behavior of weakly electric fish. Brain Behav Evol 59:199–210.

    PubMed  Google Scholar 

  • Northcutt RG (1979) Primary projections of VIII nerve afferents in a teleost, Gillichthys mirabilis. Anat Rec 193:638–645.

    Google Scholar 

  • Northcutt RG (1980) Central auditory pathways in anamniotic vertebrates. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 79–118.

    Google Scholar 

  • O’Marra SK, McCormick CA (1999) Organization and connections of the dorsal descending nucleus and other presumed acoustic areas in the brainstem of the teleost fish, Astronotus ocellatus. Hear Res 129:7–19.

    PubMed  CAS  Google Scholar 

  • Page CH (1970) Electrophysiological study of auditory responses in the goldfish brain. J Neurophysiol 33:116–128.

    PubMed  CAS  Google Scholar 

  • Page CH, Sutterlin AM (1970) Visual and auditory responses in the goldfish tegmentum. J Neurophysiol 33:129–136.

    PubMed  CAS  Google Scholar 

  • Patuzzi R (1996) Cochlear micromechanics and macromechanics. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 186–257.

    Google Scholar 

  • Plachta DT, Song J, Halvorsen MB, Popper AN (2004) Neuronal encoding of ultrasonic sound by a fish. J Neurophysiol 91:2590–25977.

    PubMed  Google Scholar 

  • Plassman W (1985) Coding of amplitude-modulated tones in the central auditory system of catfish. Hear Res 17:209–217.

    Google Scholar 

  • Platt C (1977) Hair cell distribution and orientation I goldfish otolithic organs. J Comp Neurol 172:283–298.

    PubMed  CAS  Google Scholar 

  • Platt C (1983) The peripheral vestibular system of fishes. In: Northcutt RG, Davis RE (eds) Fish Neurobiology, Vol. 1 Ann Arbor: University of Michigan Press, pp. 89–123.

    Google Scholar 

  • Platt C, Popper AN (1984) Variation in lengths of ciliary bundles on hair cells along the macula of the sacculus in two species of teleost fishes. Scan Electron Microsc (Pt 4):1915–1924.

    Google Scholar 

  • Popper AN, Eaton R (1995) The octavolateralis system and Mauthner cell: interactions and questions. Brain Behav Evol 46:124–130.

    PubMed  Google Scholar 

  • Popper AN, Edds-Walton PL (1995) Structural diversity in the inner ear of teleost fishes: implications for connectins to the Mauthner cell. Brain Behav Evol 46:131–140.

    PubMed  CAS  Google Scholar 

  • Popper AN, Fay RR (1999). The auditory periphery in fishes. In: Fay RR, Popper AN (eds) Comparative Hearing: Fish and Amphibians. New York: Springer-Verlag, pp. 43–100.

    Google Scholar 

  • Popper AN, Platt C, Edds PL (1992) Evolution of the vertebrate inner ear: an overview of ideas. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 49–57.

    Google Scholar 

  • Prasada Rao PD, Jadhao AG, Sharma SC (1987). Descending projection neurons to the spinal cord of the goldfish. J Comp Neurol 265:96–108.

    PubMed  CAS  Google Scholar 

  • Presson JC, Edds PL, Popper AN (1992) Central-peripheral and rostral-caudal organization of the innervation of the saccule in a cichlid fish. Brain Behav Evol 39:187–207.

    Google Scholar 

  • Rhode WS, Greenberg S (1992) Physiology of the cochlear nuclei. In: Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neurophysiology. New York: Springer-Verlag, pp. 94–152.

    Google Scholar 

  • Rogers PH, Cox H (1988) Underwater sound as a biological stimulus. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. (. New York: Springer-Verlag, pp. 131–149.

    Google Scholar 

  • Ruggero M (1992) The auditory nerve. In: Fay RR, Popper AN (eds) The Mammalian Auditory Pathway: Neurophysiology. New York: Springer-Verlag, pp. 34–93.

    Google Scholar 

  • Sachs M, Kiang NY-S (1968) Two-tone inhibition in auditory nerve fibers. J Acoust Soc Am 43:1120–1128.

    PubMed  CAS  Google Scholar 

  • Sand O (1974) Directional sensitivity of microphonic potentials from the perch ear. J Exp Biol 60:881–899.

    PubMed  CAS  Google Scholar 

  • Sawa M (1976) Auditory responses from single neurons of the medulla oblongata in the goldfish. Bull Jpn Soc Sci Fish 42:141–152.

    Google Scholar 

  • Schellart NAM, Kroese ABA (1989) Interrelationship of acousticolateral and visual systems in the teleost midbrain. In: Coombs S, Gorner P, Munz H (eds) The Mechanosensory Lateral Line. New York: Springer-Verlag, pp. 421–443.

    Google Scholar 

  • Schellart NAM, Kamermans M, Nederstigt LJA (1987) An electrophysiological study of the topographical organization of the multisensory torus semicircularis of the rainbow trout. Comp Biochem Physiol 88A:461–469.

    Google Scholar 

  • Schellart NAM, Wubbels RJ, Schreurs W, Faber A, Goossens JHLM (1995) Two-dimensional vibrating platform in nm range. Med Biol Eng Comput 33:217–220.

    PubMed  CAS  Google Scholar 

  • Schuijf A (1975) Directional hearing of cod (Gadus morhua) under approximate free field conditions. J Comp Physiol A 98:307–332.

    Google Scholar 

  • Schuijf A (1976) The phase model of directional hearing in fish. In: Schuijf A, Hawkins AD (eds) Sound Reception in Fish. Amsterdam: Elsevier, pp. 63–86.

    Google Scholar 

  • Schuijf A, Siemelink M (1974) The ability of cod (Gadus morhua) to orient towards a sound source. Experientia 30:773–774.

    PubMed  CAS  Google Scholar 

  • Schuijf A, Visser C, Willers A, Buwalda RJ (1977) Acoustic localization in an ostariophysine fish. Experientia 33:1062–1063.

    PubMed  CAS  Google Scholar 

  • Sento S, Furukawa T (1987) Intra-axonal labeling of saccular afferents in the goldfish Carassius auratus: correlations between morphological and physiological characteristics. J Comp Neurol 258:352–367.

    PubMed  CAS  Google Scholar 

  • Sisneros JA, Forlano PM, Deitcher DL, Bass AH (2004) Steroid-dependent auditory plasticity leads to adaptive coupling of sender and receiver. Science 305:404–407.

    PubMed  CAS  Google Scholar 

  • Steinacker A, Romero A (1992) Voltage-gated potassium current resonance in the toadfish saccular hair cell. Brain Res 574:229–236.

    PubMed  CAS  Google Scholar 

  • Streidter GF (1991) Auditory, electrosensory, and mechanosensory pathways through the diencephalon and telencephalon of channel catfishes. J Comp Neurol 312:311–331.

    Google Scholar 

  • Sugihara I, Furukawa T (1989) Morphological and functional aspects of two different types of hair cells in the goldfish sacculus. J Neurophysiol 62:1330–1343.

    PubMed  CAS  Google Scholar 

  • Suzue T, Wu GB, Furukawa T (1987) High susceptibility to hypoxia of afferent synaptic transmission in the goldfish sacculus. J Neurophysiol 58:1066–1079.

    PubMed  CAS  Google Scholar 

  • Suzuki A, Koslowski J, Crawford JD (2002) Temporal encoding for auditory computation: physiology of primary afferent neurons in sound-producing fish. J Neurosci 22:6290–301.

    PubMed  CAS  Google Scholar 

  • Tomchik SM, Lu Z (2005) Octavolateral projections and organization in the medulla of a teleost fish, the sleeper goby (Dormitator latifrons). J Comp Neurol 481:96–117.

    PubMed  Google Scholar 

  • van Bergeijk WA (1967) The evolution of vertebrate hearing. In Neff WD (ed) Contributions to Sensory Physiology, Vol. 2. New York: Academic Press, pp. 1–49.

    Google Scholar 

  • von Békésy G (1960) Experiments in Hearing. New York: McGraw-Hill.

    Google Scholar 

  • von Frisch K (1938) The sense of hearing in fish. Nature 141:8–11.

    Google Scholar 

  • de Vries HL (1950) The mechanics of labyrinth otoliths. Acta Oto-Laryngol 38:262–273.

    Google Scholar 

  • Weeg MS, Bass AH (2000) Central lateral line pathways in a vocalizing fish. J Comp Neurol 418:41–64.

    PubMed  CAS  Google Scholar 

  • Weeg M, Fay RR, Bass A (2002) Directional response and frequency tuning in saccular nerve fibers of a vocal fish, Porichthys notatus. J Comp Physiol 188:631–641.

    CAS  Google Scholar 

  • Wever EG (1949) Theory of Hearing. New York: John Wiley & Sons.

    Google Scholar 

  • Wubbels RJ, Schellart NAM (1998) Neural coding of sound direction in the auditory midbrain of the rainbow trout. J Neurophysiol 77:3060–3074.

    Google Scholar 

  • Wubbels RJ, Kroese ABA, Schellart NAM (1993) Response properties of lateral line and auditory units in the medullar oblongata of the rainbow trout (Oncorhynchus mykiss). J Exp Biol 179:77–92.

    Google Scholar 

  • Wubbels RJ, Schellart NAM, Goossens JHLM (1995) Mapping of sound direction in the trout lower midbrain. Neurosci Lett 199:179–182.

    PubMed  CAS  Google Scholar 

  • Yin TCT (2002) Neural mechanisms of encoding binaural localization cues in the auditory brainstem. In: Oertel D, Fay RR, Popper AN (eds) Integrative Functions in the Mammalian Auditory Pathway. New York: Springer-Verlag, pp. 99–159.

    Google Scholar 

  • Zottoli SJ, Bently AP, Prendergast BJ, Reiff HI (1995) Comparative studies on the Mauthner cell of teleost fish in relation to sensory input. Brain Behav Evol 46:151–164.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fay, R.R., Edds-Walton, P.L. (2008). Structures and Functions of the Auditory Nervous System ofFishes. In: Webb, J.F., Fay, R.R., Popper, A.N. (eds) Fish Bioacoustics. Springer Handbook of Auditory Research, vol 32. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73029-5_3

Download citation

Publish with us

Policies and ethics