Skip to main content

Humans as the World’s Greatest Evolutionary Force

  • Chapter
Urban Ecology
  • 17k Accesses

Abstract

In addition to altering global ecology, technology and human population growth also affect evolutionary trajectories, dramatically accelerating evolutionary change in other species, especially in commercially important, pest, and disease organisms. Such changes are apparent in antibiotic and human immunodeficiency virus (HIV) resistance to drugs, plant and insect resistance to pesticides, rapid changes in invasive species, life-history change in commercial fisheries, and pest adaptation to biological engineering products. This accelerated evolution costs at least $33 billion to $50 billion a year in the United States. Slowing and controlling arms races in disease and pest management have been successful in diverse ecological and economic systems, illustrating how applied evolutionary principles can help reduce the impact of human-kind on evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. M. Vitousek, H. A. Mooney, J. Lubchenco, J. M. Melillo, Science 277, 494 (1997).

    Article  Google Scholar 

  2. M. A. Pfaller, R. Jones, Hosp. Pract. 2001 (Special Report), 10 (2001).

    Google Scholar 

  3. G. P. Georghiou, in Pesticide Resistance: Strategies and Tactics for Management (National Academy Press, Washington, DC, 1986), pp. 14–43.

    Google Scholar 

  4. R. Weismann, Mitt. Schweiz. Entomol. Ges. 20, 484 (1947).

    Google Scholar 

  5. R. S. Desowitz, The Malaria Capers: More Tales of Parasites and People, Research and Reality (Norton, New York, 1991).

    Google Scholar 

  6. G. Georghiou, The Occurrence of Resistance to Pesticides in Arthropods: An Index of Cases Reported Through 1989 (Food and Agriculture Organization of the United Nations, Rome, 1991).

    Google Scholar 

  7. National Research Council, The Future Role of Pesticides in U.S. Agriculture (National Academies Press, Washington, DC, 2000).

    Google Scholar 

  8. I. Heap, Pesticide Sci. 51, 235 (1997).

    Article  Google Scholar 

  9. V. Hughes, R. Datta, Nature 302, 725 (1983).

    Article  Google Scholar 

  10. L. Garrett, The Coming Plague: Newly Emerging Diseases in a World Out of Balance (Farrar, Straus, and Giroux, New York, 1994).

    Google Scholar 

  11. M. A. Abramson, D. J. Sexton, Infect. Control. Hosp. Epidemiol. 20, 408 (1999).

    Article  Google Scholar 

  12. P. A. Flores, S. M. Gordon, Cleveland Clin. J. Med. 64, 527 (1997).

    Google Scholar 

  13. S. Levy, The Antibiotic Paradox: How Miracle Drugs Are Destroying the Miracle (Plenum Press, New York, 1994).

    Google Scholar 

  14. J. C. Chee-Stanford, R. Aminov, I. Krapac, N. Gerrigues-Jeanjean, R. Mackie, Appl. Environ. Microbiol. 57, 1494 (2001).

    Article  Google Scholar 

  15. K. Crandall, Ed., The Evolution of HIV (Johns Hopkins Univ. Press, Baltimore, 1999).

    Google Scholar 

  16. R. M. Bush, C. Bender, K. Subbarao, N. Cox, W. Fitch, Science 286, 1921 (1999).

    Article  Google Scholar 

  17. S. M. Wolinsky et al., Science 272, 537 (1996).

    Article  Google Scholar 

  18. Y. Yamaguchi, T. Gojobori, Proc. Natl. Acad. Sci. U.S.A. 94, 1264 (1997).

    Article  Google Scholar 

  19. D. V. Havlir, S. Eastman, A. Gamst, D. Richman, J. Virol. 70, 7894 (1996).

    Google Scholar 

  20. M. H. St. Clair et al., Science 253, 1557 (1991).

    Article  Google Scholar 

  21. S. V. Gulnik et al., Biochemistry 34, 9282 (1995).

    Article  Google Scholar 

  22. J. H. Condra et al., J. Virol. 70, 8270 (1996).

    Google Scholar 

  23. D. R. Kuritzkes et al., AIDS 10, 975 (1996).

    Google Scholar 

  24. M. A. Wainberg et al., Science 271, 1282 (1996).

    Article  Google Scholar 

  25. P. Handford, G. Bell, T. Reimchen, J. Fish Res. Bd. Can. 34, 954 (1977).

    Google Scholar 

  26. W. E. Ricker, Can. J. Fish. Aquat. Sci. 38, 1636 (1981).

    Google Scholar 

  27. J. N. Thompson, Trends Ecol. Evol. 13, 329 (1998).

    Article  Google Scholar 

  28. R. F. Johnston, R. Selander, Science 144, 548 (1964).

    Article  Google Scholar 

  29. N. W. Blackstone, A. R. Joslyn, J. Exp. Mar. Biol. Ecol. 80, 1 (1984).

    Article  Google Scholar 

  30. D. N. Reznick, H. Bryga, J. A. Endler, Nature 346, 357 (1990).

    Article  Google Scholar 

  31. J. A. Endler, Natural Selection in the Wild (Princeton Univ. Press, Princeton, NJ, 1986).

    Google Scholar 

  32. A. C. Nyquist, R. Gonzales, J. F. Steiner, M. A. Sande, JAMA 279, 875 (1998).

    Article  Google Scholar 

  33. J. K. Wong et al., Proc. Natl. Acad. Sci. U.S.A. 94, 12574 (1997).

    Article  Google Scholar 

  34. A. Lazarus, J. Sanders, Postgrad. Med. 108, 108 (2000).

    Google Scholar 

  35. M. F. Vanwordragen, G. Honee, H. J. M. Dons, Transgen. Res. 2, 170 (1993).

    Article  Google Scholar 

  36. C. Singsit et al., Transgen. Res. 6, 169 (1997).

    Article  Google Scholar 

  37. S. Arpaia et al., Theor. Appl. Genet. 95, 329 (1997).

    Article  Google Scholar 

  38. G. A. Thompson, W. R. Hiatt, D. Facciotti, D. M. Stalker, L. Comai, Weed Science 35, 19 (1987).

    Google Scholar 

  39. R. M. Hauptmann, G. Dellacioppa, A. G. Smith, G. M. Kishore, J. M. Widholm, Mol. Gen. Genet. 211, 357 (1988).

    Article  Google Scholar 

  40. I. Potrykus et al., Euphytica 85, 441 (1995).

    Article  Google Scholar 

  41. S. J. Du et al., Bio-Technology 10, 176 (1992).

    Google Scholar 

  42. L. M. Houdebine, Transgen. Res. 9, 305 (2000).

    Article  Google Scholar 

  43. S. Abbo, B. Rubin, Science 287, 1927 (2000).

    Google Scholar 

  44. N. C. Ellstrand, H. Prentice, J. Hancock, Annu. Rev. Ecol. Syst. 30, 539 (1999).

    Article  Google Scholar 

  45. D. Pimentel et al., in The Pesticide Question: Environment, Economics and Ethics D. Pimentel, H. Lehman, Eds. (Chapman & Hall, New York, 1991), pp. 47–84.

    Google Scholar 

  46. C. Carrasco-Tauber, L. Moffitt, Am. J. Agric. Econ. 74, 158 (1992).

    Article  Google Scholar 

  47. B. E. Tabashnik, N. L. Cushing, N. Finson, M. W. Johnson, J. Econ. Entomol. 83, 1671 (1990).

    Google Scholar 

  48. P. S. McKinnon, V. H. Tam, Support. Care Cancer 9, 8 (2001).

    Article  Google Scholar 

  49. R. Rubin et al., Emerg. Infect. Dis. 5, 9 (1999).

    Article  Google Scholar 

  50. Costs per hospital stay for methicillin-sensitive S. aureus are estimated at $9000 to $29,000. Cost per methicillin-resistant S. aureus case is $27,000 to $34,000. Community-acquired infections versus nosocornial infections cost $250 million versus $180 million across 1.3 million (nonobstetric) hospitalizations [49].

    Google Scholar 

  51. R. M. Gulick et al., N. Engl. J. Med. 337, 734 (1997).

    Article  Google Scholar 

  52. S. A. Bozzette et al., N. Engl. J. Med. 344, 817 (2001).

    Article  Google Scholar 

  53. Centers for Disease Control, Morbid. Mortal. Weekly Rep. 48, (1999).

    Google Scholar 

  54. F. Gould, Biocontrol Sci. Technol. 4, 451 (1994).

    Article  Google Scholar 

  55. D. J. Austin, M. Kakehashi, R. M. Anderson, Proc. R. Soc. London Ser. B 264, 1629 (1997).

    Article  Google Scholar 

  56. S. Bonhoeffer, M. Lipsitch, B. Levin, Proc. Natl. Acad. Sci. U.S.A. 94, 12106 (1997).

    Article  Google Scholar 

  57. I. M. Hastings, M. J. Mackinnon, Parasitology 117, 411 (1998).

    Article  Google Scholar 

  58. S. Gubbins, C. A. Gilligan, Proc. R. Soc. London Ser. B 266, 2539 (1999).

    Article  Google Scholar 

  59. M. Lipsitch, C. Bergstrom, B. Levin, Proc. Natl. Acad. Sci. U.S.A. 97, 1938 (2000).

    Article  Google Scholar 

  60. D. Katzenstein, Lancet 350, 970 (1997).

    Article  Google Scholar 

  61. D. Pillay, S. Taylor, D. Richman, Rev. Med. Virol. 10, 231 (2000).

    Article  Google Scholar 

  62. M. A. Hoy, Philos. Trans. R. Soc. Ser. B. 353, 1787 (1998).

    Article  Google Scholar 

  63. C. Chaix-Couturier, C. Holtzer, K. Phillips, I. Durand-Zaleski, J. Stansell, Pharmacoeconomics 18, 425 (2000).

    Article  Google Scholar 

  64. J. Byrd, W. Barrentine, D. Shaw, “Herbicide resistance: Prevention and detection” (Mississippi State Univ. Extension Service, Mississippi State, MS, 2000).

    Google Scholar 

  65. B. E. Tabashnik, in Pesticide Resistance in Arthropods, R. T. Roush and B. E. Tabashnik, Eds. (Chapman & Hall, New York, 1990), pp. 153–182.

    Google Scholar 

  66. B. E. Tabashnik, Annu. Rev. Entomol. 39, 47 (1994).

    Article  Google Scholar 

  67. D. N. Alstad, D. A. Andow, Science 268, 1894 (1995).

    Article  Google Scholar 

  68. B. E. Tabashnik, Y.-B. Liu, N. Finson, N. Masson, D. G. Heckel, Proc. Natl. Acad. Sci. U.S.A. 94, 1640 (1997).

    Article  Google Scholar 

  69. J. Mallet, P. Porter, Proc. R. Soc. London Ser. B 250, 165 (1992).

    Article  Google Scholar 

  70. P. Ewald, Evolution of Infectious Disease (Oxford Univ. Press, Oxford, 1994).

    Google Scholar 

  71. J. A. McKenzie, Ecological and Evolutionary Aspects of Insecticide Resistance (Environmental Intelligence Unit R.G. Landes/Academic Press, Austin, TX, 1996).

    Google Scholar 

  72. E. E. Grafton Cardwell, M. A. Hoy, Environ. Entomol. 15, 1130 (1986).

    Google Scholar 

  73. F. Gould, Weed Technol. 9, 830 (1995).

    Google Scholar 

  74. M. Kollef, V. Fraser, Ann. Intern. Med. 134, 298 (2001).

    Google Scholar 

  75. S. R. Palumbi, The Evolution Explosion: How Humans Cause Rapid Evolutionary Change (Norton, New York, 2001).

    Google Scholar 

  76. J. S. Griffitts, J. Whitacre, D. Stevens, R. Aroian, Science 293, 860 (2001).

    Article  Google Scholar 

  77. L. J. Gahan, F. Gould, D. G. Heckel, Science 293, 857 (2001).

    Article  Google Scholar 

  78. Supported by NSF and the Pew Charitable Trusts, and improved by comments from P. Barschall, S. Cohen, B. Farrell, J. Hawkins, D. Haig, E. O’Brien, M. Roberts, S. Vollmer, and three reviewers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Palumbi, S.R. (2008). Humans as the World’s Greatest Evolutionary Force. In: Marzluff, J.M., et al. Urban Ecology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73412-5_2

Download citation

Publish with us

Policies and ethics