Skip to main content

Kinetics of Mineral Dissolution

  • Chapter
Kinetics of Water-Rock Interaction

The rates of mineral dissolution contribute to processes controlling soil fertility, porosity in aquifers and oil reservoirs, transport and sequestration of contaminants and CO2, cycling of metals and formation of ore deposits, and many other geochemical characteristics and phenomena. For example, the weathering rates of Ca- and Mg-silicates influence the concentrations of CO2 in the atmosphere over 105–106 y timescales, impacting the global carbon cycle. Mineral dissolution thus influences the chemical and physical nature of our landscape as well as the quality and quantity of potable water and fertile soil available to sustain ecosystems. The rates of mineral dissolution (Fig. 5.1) determine the lifetimes of minerals in soil environments. Especially since the 1970s, researchers have focused on measurement of mineral dissolution rates in order to promote quantitative prediction of the evolution of our environment (Stumm, 1997). In this chapter, we discuss many of the concepts and models used to predict mineral dissolution rates for oxide, carbonate, and silicate minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aagaard P. and Helgeson H. C. (1982) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions I. Theoretical considerations. American Journal of Science 282, 237-285.

    Google Scholar 

  • Alekseyev V. A., Medvedeva L. S., and Prisyagina N. I. (1993) Rates of Na-K exchange between alkali feldspars in aqueous solutions. Geochemistry International 30,120-134.

    Google Scholar 

  • Alekseyev V. A., Medvedeva L. S., Prisyagina N. I., Meshalkin S. S., and Balabin A. (1997) Change in the dissolution rates of alkali feldspars as a result of secondary mineral precipitation and approach to equilibrium. Geochimica et Cosmochimica Acta 59, 19-31.

    Google Scholar 

  • Alkattan M., Oelkers E. H., Dandurand J.-L., and Schott J. (2002) An experimental study of calcite dissolution rates at acidic conditions and 25 C in the presence of NaPO3 and MgCl2 . Chemical Geology 190, 291-302.

    Google Scholar 

  • Amrhein C. and Suarez D. L. (1988) The use of a surface complexation model to describe the kinetics of ligand-promoted dissolution of anorthite. Geochimica et Cosmochimica Acta 52, 2785-2793.

    Google Scholar 

  • Amrhein C. and Suarez D. L. (1992) Some factors affecting the dissolution kinetics of anorthite at 25 C. Geochimica et Cosmochimica Acta 56, 1815-1826.

    Google Scholar 

  • Bales R. C. and Morgan J. J. (1985) Dissolution kinetics of chrysotile at pH 7 to 10. Geochimica et Cosmochimica Acta 49(11), 2281-2288.

    Google Scholar 

  • Banfield J. F., Ferruzzi C. G., Casey W. H., and Westrich H. R. (1995) HRTEM study comparing naturally and experimentally weathered pyroxenoids. Geochimica et Cosmochimica Acta 59(1), 19-31.

    Google Scholar 

  • Banfield J. F. and Nealson K. H. (1997) Geomicrobiology: Interactions Between Microbes and Minerals. Mineralogical Society of America.

    Google Scholar 

  • Beig M. and Luttge A. (2006) Albite dissolution kinetics as a function of distance from equilibrium: Implications for natural feldspar weathering. Geochimica et Cosmochimica Acta 70, 1402-1420.

    Google Scholar 

  • Bennett P. C. (1991) Quartz dissolution in organic-rich aqueous systems. Geochimica et Cosmochimica Acta 55, 1781-1797.

    Google Scholar 

  • Bennett P. C., Melcer M. E., Siegel D. I., and Hassett J. P. (1988) The dissolution of quartz in dilute aqueous solutions of organic acids at 25 C. Geochimica et Cosmochimica Acta 52, 1521-1530.

    Google Scholar 

  • Berg A. and Banwart S. A. (2000) Carbon dioxide mediated dissolution of Ca-feldspar: Implications for silicate weathering. Chemical Geology 163, 25-42.

    Google Scholar 

  • Berger G., Cadore E., Schott J., and Dove P. M. (1994) Dissolution rate of quartz in lead and sodium electrolyte solutions between 25 and 300 C: Effect of the nature of surface complexes and reaction affinity. Geochimica et Cosmochimica Acta 58, 541-551.

    Google Scholar 

  • Berner R. A. (1978) Rate control of mineral dissolution under earth surface conditions. American Journal of Science 278(9), 1235-1252.

    Google Scholar 

  • Biber M. V., Afonso M. D., and Stumm W. (1994) The coordination chemistry of weathering 4. Inhibition of the dissolution of oxide minerals. Geochimica et Cosmochimica Acta 58(9), 1999-2010.

    Google Scholar 

  • Blum A. E. and Lasaga A. C. (1987) Monte Carlo simulations of surface reaction rate laws. In Aquatic Surface Chemistry: Chemical Processes at the ParticleWater Interface (ed. W. Stumm), pp. 255-291. John Wiley & Sons, Inc.

    Google Scholar 

  • Blum A. E. and Lasaga A. C. (1988) Role of surface speciation in the lowtemperature dissolution of minerals. Nature 331, 431-433.

    Google Scholar 

  • Blum A. E. and Lasaga A. C. (1991) The role of surface speciation in the dissolution of albite. Geochimica et Cosmochimica Acta 55, 2193-2201.

    Google Scholar 

  • Blum A. E. and Stillings L. L. (1995) Feldspar dissolution kinetics. In Chemical Weathering Rates of Silicate Minerals, Vol. 31 (ed. A. F. White and S. L. Brantley), pp. 291-351. Mineralogical Society of America.

    Google Scholar 

  • Brady P. V. (1991) The effect of silicate weathering on global temperature and atmospheric CO2 . Journal of Geophysical Research 96B, 18101-18106.

    Google Scholar 

  • Brady P. V. and Carroll S. A. (1994) Direct effects of CO2 and temperature on silicate weathering: Possible implications for climate control. Geochimica et Cosmochimica Acta 58, 1853-1856.

    Google Scholar 

  • Brady P. V. and Walther J. V. (1992) Surface chemistry and silicate dissolution at elevated temperatures. American Journal of Science 292, 639-658.

    Google Scholar 

  • Brantley S. L. (2004) Reaction kinetics of primary rock-forming minerals under ambient conditions. In Surface and Ground Water, Weathering, and Soils, Vol. 5 (ed. J. I. Drever), pp. 73-118. Elsevier.

    Google Scholar 

  • Brantley S. L. and Chen Y. (1995) Chemical weathering rates of pyroxenes and amphiboles. In Chemical Weathering Rates of Silicate Minerals, Vol. 31 (ed. A. F. White and S. L. Brantley), pp. 119-172. Mineralogical Society of America.

    Google Scholar 

  • Brantley S. L., Crane S. R., Crerar D., Hellmann R., and Stallard R. (1986a) Dissolution at dislocation etch pits in quartz. Geochimica et Cosmochimica Acta 50, 2349-2361.

    Google Scholar 

  • Brantley S. L., Crane S. R., Crerar D. A., Hellmann R., and Stallard R. (1986b) Dislocation etch pits in quartz. In Geochemical Processes at Mineral Surfaces (ed. J. A. Davis and K. F. Hayes), pp. 635-649. American Chemical Society.

    Google Scholar 

  • Brantley S. L., Ruebush S., Jang J.-H., and Tien M. (2006) Analysis of (Bio) geo-chemical kinetics of Fe III oxides. In Methods for Study of Microbe-Mineral Inter-actions, Vol. 14 (ed. P. A. Maurice and L. A. Warren), pp. 79-116. Clay Mineral Society.

    Google Scholar 

  • Brantley S. L. and Stillings L. L. (1996) Feldspar dissolution at 25 C and low pH. American Journal of Science 296, 101-127.

    Google Scholar 

  • Brantley S. L. and Stillings L. L. (1997) Reply to comment: Feldspar dissolution at 25 C and low pH. American Journal of Science 297, 1021-1032.

    Google Scholar 

  • Bruno J., Stumm W., Wersin P., and Brandberg F. (1992) On the influence of carbonate in mineral dissolution. I. The thermodynamics and kinetics of hematite dissolution in bicarbonate solutions at T = 25 C. Geochimica et Cosmochimica Acta 56, 1139-1147.

    Google Scholar 

  • Burch T. E., Nagy K. L., and Lasaga A. C. (1993) Free energy dependence of albite dissolution kinetics at 80 C and pH 8.8. Chemical Geology 105, 137-162.

    Google Scholar 

  • Burton W. K., Cabrera N., and Frank F. C. (1951) The growth of crystals and the equilibrium structure of their surfaces. Philosophical Transactions of the Royal Society of London 243, 299-358.

    Google Scholar 

  • Busenberg E. and Plummer L. N. (1982) The kinetics of dissolution of dolomite in CO2 - H2O systems at 1.5 to 65 C and 0 to 1 atm pCO2 . American Journal of Science 282, 45-78.

    Google Scholar 

  • Busenberg E. and Plummer L. N. (1986) A comparative study of the dissolution and crystal growth kinetics of calcite and aragonite. In Studies in Diagenesis (ed. F. A. Mumpton), pp. 139-168. U.S. Geological Survey Bulletin.

    Google Scholar 

  • Cabrera N. and Levine M. M. (1956) On the dislocation theory of evaporation of crystals. Philosophical Magazine 1, 450-458.

    Google Scholar 

  • Cabrera N., Levine M. M., and Plaskett J. S. (1954) Hollow dislocations and etch pits. Physical Review 96, 1153.

    Google Scholar 

  • Carroll S. A. and Walther J. V. (1990) Kaolinite dissolution at 25 , 60 , and 80 C. American Journal of Science 290, 797-810.

    Google Scholar 

  • Casey W. H., Banfield J. F., Westrich H. R., and McLaughlin L. (1993a) What do dissolution experiments tell us about natural weathering? Chemical Geology 105 (1-3), 1-15.

    Google Scholar 

  • Casey W. H. and Cheney M. A. (1993) Bronsted reactions on oxide mineral surfaces and the temperature-dependence of their dissolution rates. Aquatic Sciences 55, 304-313.

    Google Scholar 

  • Casey W. H., Hochella Jr. M. F., and Westrich H. R. (1993b) The surface-chemistry of manganiferous silicate minerals as inferred from experiments on tephroite (Mn2 SiO4 ). Geochimica et Cosmochimica Acta 57(4), 785-793.

    Google Scholar 

  • Casey W. H. and Ludwig C. (1996) The mechanism of dissolution of oxide minerals. Nature 381, 506-509.

    Google Scholar 

  • Casey W. H. and Sposito G. (1992) On the temperature dependence of mineral dis-solution rates. Geochimica et Cosmochimica Acta 56, 3825-3830.

    Google Scholar 

  • Casey W. H. and Westrich H. R. (1992) Control of dissolution rates of orthosilicate minerals by divalent metal-oxygen bonds. Nature 355, 157-159.

    Google Scholar 

  • Casey W. H., Westrich H. R., Arnold G. W., and Banfield J. F. (1989) The surface chemistry of dissolving labradorite feldspar. Geochimica et Cosmochimica Acta 53,821-832.

    Google Scholar 

  • Casey W. H., Westrich H. R., and Holdren G. R. (1991) Dissolution rates of plagioclase at pH = 2 and 3. American Mineralogist 76, 211-217.

    Google Scholar 

  • Cheah S.-F., Kraemer S. M., Cervini-Silva J., and Sposito G. (2003) Steady-state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: Implications for the microbial acquisition of iron. Chemical Geology 198,63-75.

    Google Scholar 

  • Chen Y. and Brantley S. L. (1997) Temperature-and pH-dependence of albite dissolution rate at acid pH. Chemical Geology 135, 275-292.

    Google Scholar 

  • Chen Y. and Brantley S. L. (1998) Diopside and anthophyllite dissolution at 25◦ C and 90◦ C and acid pH. Chemical Geology 147(3-4), 233-248.

    Google Scholar 

  • Chen Y. and Brantley S. L. (2000) Dissolution of forsteritic olivine at 65◦ C and 2 < pH < 5. Chemical Geology 165(3-4), 267-281.

    Google Scholar 

  • Chou L., Garrels R. M., and Wollast R. (1989) Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chemical Geology 78, 269-282.

    Google Scholar 

  • Chou L. and Wollast R. (1984) Study of the weathering of albite at room temperature and pressure with a fluidized bed reactor. Geochimica et Cosmochimica Acta 48, 2205-2217.

    Google Scholar 

  • Chou L. and Wollast R. (1985) Steady-state kinetics and dissolution mechanisms of albite. American Journal of Science 285, 963-993.

    Google Scholar 

  • Cocozza C., Tsao C. C. G., Cheah S.-F., Kraemer S. M., Raymond K. N., Miano T. M., and Sposito G. (2002) Temperature dependence of goethite dissolution promoted by trihydroxamate siderophores. Geochimica et Cosmochimica Acta 66,431-438.

    Google Scholar 

  • Criscenti L., Kubicki J., and Brantley S. L. (2006) Silicate glass and mineral disso-lution: Calculated reaction paths and activation energies for hydrolysis of a Q3 Si by H3 O+ using ab initio methods. Journal of Physical Chemistry 110, 198-206.

    Google Scholar 

  • Davis K. J., Dove P. M., and De Yoreo J. J. (2000) The role of Mg2+ as an impurity in calcite growth. Science 290, 1134-1137.

    Google Scholar 

  • Devidal J. L., Schott J., and Dandurand J. L. (1997) An experimental study of kaoli-nite dissolution and precipitation kinetics as a function of chemical affinity and solution composition at 150 C, 40 bars, and pH 2, 6.8, and 7.8. Geochimica et Cosmochimica Acta 61(24), 5165-5186.

    Google Scholar 

  • Dietzel M. (2000) Dissolution of silicates and the stability of polysilicic acid. Geochimica et Cosmochimica Acta 64(19), 3275-3281.

    Google Scholar 

  • Dixit S. and Carroll S. A. (2007) Effect of solution saturation state and temperature on diopside dissolution. Geochemical Transactions 8(3), in press.

    Google Scholar 

  • Doremus R. H. (1983) Diffusion-controlled reaction of water with glass. Journal of Non-Crystalline Solids 55, 143-147.

    Google Scholar 

  • Dove P. M. (1994) The dissolution kinetics of quartz in sodium chloride solutions at 25 to 300 C. American Journal of Science 294, 665-712.

    Google Scholar 

  • Dove P. M. (1995) Kinetic and thermodynamic controls on silica reactivity in weath-ering environments. In Chemical Weathering Rates of Silicate Minerals, Vol. 31 (ed. A. F. White and S. L. Brantley), pp. 236-290. Mineralogical Society of America, Short Course.

    Google Scholar 

  • Dove P. M. (1999) The dissolution kinetics of quartz in aqueous mixed cation solutions. Geochimica et Cosmochimica Acta 63, 3715-3727.

    Google Scholar 

  • Dove P. M. and Crerar D. A. (1990) Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor. Geochimica et Cosmochimica Acta 54, 955-969.

    Google Scholar 

  • Dove P. M., Han N., and De Yoreo J. J. (2005) Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior. Proceedings of National Academy of Sciences 102(43), 15357-15362.

    Google Scholar 

  • Dove P. M. and Nix C. J. (1997) The influence of the alkaline earth cations, magnesium, calcium, and barium on the dissolution kinetics of quartz. Geochimica et Cosmochimica Acta 61, 3329-3340.

    Google Scholar 

  • Dove P. M. and Platt F. M. (1996) Compatible real-time rates of mineral dissolution by Atomic Force Microscopy (AFM). Chemical Geology 127, 331-338.

    Google Scholar 

  • Drever J. I. and Stillings L. (1997) The role of organic acids in mineral weathering. Colloids and Surfaces 120, 167-181.

    Google Scholar 

  • Ferruzzi G. G. (1993) The character and rates of dissolution of pyroxenes and pyroxenoids. M.S., University of California, Davis.

    Google Scholar 

  • Fleer V. N. (1982) The dissolution kinetics of anorthite (CaAl2 Si2 O8 ) and syn-thetic strontium feldspar (Sr Al2 Si2 O8 ) in aqueous solutions at temperatures be-low 100 C: Applications to the geological disposal of radioactive nuclear wastes. PhD, Pennsylvania State University.

    Google Scholar 

  • Frogner P. and Schweda P. (1998) Hornblende dissolution kinetics at 25 C. Chemical Geology 151(1-4), 169-179.

    Google Scholar 

  • Furrer G. and Stumm W. (1983) The role of surface coordination in the dissolution of γ-Al2 O3 in dilute acids. Chimie 37.

    Google Scholar 

  • Furrer G. and Stumm W. (1986) The coordination chemistry of weathering; I. Dissolution kinetics of γ - Al2 O3 and BeO. Geochimica et Cosmochimica Acta 50, 1847-1860.

    Google Scholar 

  • Gautier J.-M., Oelkers E. H., and Schott J. (1994) Experimental study of K-feldspar dissolution rates as a function of chemical affinity at 150 C and pH 9. Geochimica et Cosmochimica Acta 58(21), 4549-4560.

    Google Scholar 

  • Giammar D. E., Bruant R. G. J., and Peters C. A. (2005) Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide. Chemical Geology 217, 257-276.

    Google Scholar 

  • Golubev S. V., Pokrovsky O. S., and Schott J. (2005) Experimental determination of the effect of dissolved CO2 on the dissolution kinetics of Mg and Ca silicates at 25 C. Chemical Geology 217, 227-238.

    Google Scholar 

  • Grandstaff D. E. (1977) Some kinetics of bronzite orthopyroxene dissolution. Geochimica et Cosmochimica Acta 41(8), 1097-1103.

    Google Scholar 

  • Gratz A. J. and Bird P. (1993) Quartz dissolution: Negative crystal experiments and a rate law. Geochimica et Cosmochimica Acta 57, 965-976.

    Google Scholar 

  • Guy C. and Schott J. (1989) Multisite surface reaction versus transport control during the hydrolysis of a complex oxide. Chemical Geology 78, 181-204.

    Google Scholar 

  • Hamilton J. P., Brantley S. L., Pantano C. G., Criscenti L. J., and Kubicki J. D. (2001) Dissolution of nepheline, jadeite and albite glasses: Toward better models for aluminosilicate dissolution. Geochimica et Cosmochimica Acta 65(21), 3683-3702.

    Google Scholar 

  • Hamilton J. P., Pantano C. G., and Brantley S. L. (2000) Dissolution of albite glass and crystal. Geochimica et Cosmochimica Acta 64, 2603-2615.

    Google Scholar 

  • Hellmann R. (1994) The albite-water system: Part I. The kinetics of dissolution as a function of pH at 100, 200, and 300 C. Geochimica et Cosmochimica Acta 58, 595-611.

    Google Scholar 

  • Hellmann R. (1995) The albite-water system: Part II. The time-evolution of the stoichiometry of dissolution as a function of pH at 100, 200, and 300 C. Geochimica et Cosmochimica Acta 59, 1669-1697.

    Google Scholar 

  • Hellmann R., Eggleston C. M., Hochella M. F., and Crerar D. A. (1990) The formation of leached layers on albite surfaces during dissolution under hydrothermal conditions. Geochimica et Cosmochimica Acta 54(5), 1267-1281.

    Google Scholar 

  • Hellmann R., Penisson J.-M., Hervig R. L., Thomassin J.-H., and Abrioux M.-F. (2003) An EFTEM/HRTEM high-resolution study of the near surface of labradorite feldspar altered at acid pH: Evidence for interfacial dissolutionprecipitation. Physics and Chemistry of Minerals 30, 192-197.

    Google Scholar 

  • Hellmann R. and Tisserand D. (2006) Dissolution kinetics as a function of the Gibbs free energy of reaction: An experimental study based on albite feldspar. Geochimica et Cosmochimica Acta 70, 364-383.

    Google Scholar 

  • Hersman L., Lloyd T., and Sposito G. (1995) Siderophore-promoted dissolution of hematite. Geochimica et Cosmochimica Acta 59(16), 3327-3330.

    Google Scholar 

  • Hersman L. E. (2000) The role of siderophores in iron oxide dissolution. In Envi-ronmental Microbe-Metal Interactions (ed. D. Lovley), pp. 145-157. ASM Press.

    Google Scholar 

  • Hewkin D. J. and Prince R. H. (1970) The mechanism of octahedral complex formation by labile metal ions. Coordination Chemistry Reviews 5, 45-73.

    Google Scholar 

  • Hoch A. R., Reddy M. M., and Drever J. I. (1996) The effect of iron content and dissolved O2 on dissolution fates of clinopyroxene at pH 5.8 and 25 C: Preliminary results. Chemical Geology 132(1-4), 151-156.

    Google Scholar 

  • Holdren G. R. and Berner R. A. (1979) Mechanism of feldspar weathering: I. Experimental studies. Geochimica et Cosmochimica Acta 43(8), 1161-1172.

    Google Scholar 

  • Holdren G. R. and Speyer P. M. (1987) Reaction rate-surface area relationships during the early stages of weathering. II. Data on eight additional feldspars. Geochemica et Cosmochimica Acta 51, 2311-2318.

    Google Scholar 

  • Holmen B. A. and Casey W. H. (1996) Hydroxymate ligands, surface chemistry, and the mechanism of ligand-promoted dissolution of goethite [α-FeOOH(s)]. Geochimica et Cosmochimica Acta 60, 4403-4416.

    Google Scholar 

  • Holmen B. A., Tejedor-Tejedor M. I., and Casey W. H. (1997) Hydroxamate com-plexes in solution and at the goethite-water interface: A cylindrical internal re-flection Fourier transform infrared spectroscopy study. Langmuir 13, 2197-2206.

    Google Scholar 

  • Huertas F. J., Chou L., and Wollast R. (1999) Mechanism of kaolinite dissolution at room temperature and pressure Part II: Kinetic study. Geochimica et Cosmochimica Acta 63, 3261-3275.

    Google Scholar 

  • Icenhower J. and Dove P. M. (2000) The dissolution kinetics of amorphous silica into sodium chloride solutions: Effects of temperature and ionic strength. Geochimica et Cosmochimica Acta 64, 4193-4203.

    Google Scholar 

  • Iler R. K. (1979) The Chemistry of Silica. John Wiley and Sons, Inc.

    Google Scholar 

  • Inskeep W. P. and Bloom P. R. (1985) An evaluation of rate equations for calcite precipitation kinetics at PCO2 less than 0.01 atm and pH greater than 8. Geochimica et Cosmochimica Acta 49, 2165-2180.

    Google Scholar 

  • Kalinowski B., Faith-Ell C., and Schweda P. (1998) Dissolution kinetics and alter-ation of epidote in acidic solutions at 25 C. Chemical Geology 151, 181-197.

    Google Scholar 

  • Kalinowski B. E., Liermann L. J., Brantley S. L., Barnes A., and Pantano C. G. (2000a) X-ray photoelectron evidence for bacteria-enhanced dissolution of hornblende. Geochimica et Cosmochimica Acta 64(8), 1331-1343.

    Google Scholar 

  • Kalinowski B. E., Liermann L. J., Givens S., and Brantley S. L. (2000b) Rates of bacteria-promoted solubilization of Fe from minerals: A review of problems and approaches. Chemical Geology 169, 357-370.

    Google Scholar 

  • Kalinowski B. E. and Schweda P. (1996) Kinetics of muscovite, phiogopite and biotite dissolution and alteration at pH 1-4, room temperature. Geochimica et Cosmochimica Acta 60, 367-385.

    Google Scholar 

  • Kazmierczak T. F., Tomson M. G., and Nancollas G. H. (1982) Crystal growth of calcium carbonate: A controlled composition kinetic study. Journal of Physical Chemistry 86, 103-107.

    Google Scholar 

  • Knauss K. G., Nguyen S. N., and Weed H. C. (1993) Diopside dissolution kinetics as a function of pH, CO2 , temperature, and time. Geochimica et Cosmochimica Acta 57(2), 285-294.

    Google Scholar 

  • Knauss K. G. and Wolery T. J. (1989) Muscovite dissolution kinetics as a function of pH and time at 70 C. Geochimica et Cosmochimica Acta 53(7), 1493-1501.

    Google Scholar 

  • Kohler S. J., Bosbach D., and Oelkers E. H. (2005) Do clay mineral dissolution rates reach steady state? Geochimica et Cosmochimica Acta 69(8), 1997-2006.

    Google Scholar 

  • Kraemer S. M. (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquatic Science 66, 3-18.

    Google Scholar 

  • Kraemer S. M., Cheah S.-F., Zapf R., Xu J., Raymond K. N., and Sposito G. (1999) Effect of hydroxamate siderophores on Fe release and Pb(II) adsorption by goethite. Geochimica et Cosmochimica Acta 63, 3003-3008.

    Google Scholar 

  • Kraemer S. M. and Hering J. G. (1997) Influence of solution saturation state on the kinetics of ligand-controlled dissolution of aluminum oxide. Geochimica et Cosmochimica Acta 61, 2855-2866.

    Google Scholar 

  • Kubicki J. D., Blake G. A., and S.E. A. (1996) Ab initio calculations on alumi-nosilicate Q3 species: Implications for atomic structures of mineral surfaces and dissolution mechanisms of feldspars. American Mineralogist 81, 789-799.

    Google Scholar 

  • Kubicki J. D., Schroeter L. M., Itoh M. J., Nguyen B. N., and Apitz S. E. (1999) At-tenuated total reflectance Fourier-transform infrared spectroscopy of carboxylic acids adsorbed onto mineral surfaces. Geochimica et Cosmochimica Acta 63, 2709-2725.

    Google Scholar 

  • Kump L. R., Brantley S. L., and Arthur M. A. (2000) Chemical weathering, at-mospheric CO2 and climate. Annual Review of Earth and Planetary Sciences 28, 611-667.

    Google Scholar 

  • Laidler K. J. (1987) Chemical Kinetics. Harper and Row.

    Google Scholar 

  • Lasaga A. C. (1981) Transition state theory. In Kinetics of Geochemical Processes, Vol. 8 (ed. A. C. Lasaga and R. J. Kirkpatrick), pp. 135-169. Mineralogical Society of America.

    Google Scholar 

  • Lasaga A. C. (1984) Chemical kinetics of water-rock interactions. Journal of Geophysical Research 89, 4009-4025.

    Google Scholar 

  • Lasaga A. C. (1995) Fundamental approaches in describing mineral dissolution and precipitation rates. In Chemical Weathering Rates of Silicate Minerals, Vol. 31 (ed. A. F. White and S. L. Brantley), pp. 23-81. Mineralogical Society of America.

    Google Scholar 

  • Lasaga A. C., and Kirkpatrick, R. J. (1981) Kinetics of Geochemical Processes. Reviews in Mineralogical Society of America 3(8), 1-408.

    Google Scholar 

  • Lasaga A. C. and Luttge A. (2001) Variation of crystal dissolution rate based on a dissolution stepwise model. Science 291, 2400-2404.

    Google Scholar 

  • Lichtner P. C. (1998) Modeling reactive flow and transport in natural systems. Proceedings of the Rome Seminar on Environmental Geochemistry, 5-72.

    Google Scholar 

  • Liermann L. J., Kalinowski B. E., Brantley S. L., and Ferry J. G. (2000) Role of bacterial siderophores in dissolution of hornblende. Geochimica et Cosmochimica Acta 64(4), 587-602.

    Google Scholar 

  • Lin C. L. and Clemency C. V. (1981) The dissolution kinetics of brucite, antigorite, talc, and phlogopite at room temperature and pressure. American Mineralogist 66 (7-8), 801-806.

    Google Scholar 

  • Luce R. W., Bartlett R. W., and Parks G. A. (1972) Dissolution kinetics of magnesium silicates. Geochimica et Cosmochimica Acta 36(1), 35-50.

    Google Scholar 

  • Ludwig C. and Casey W. H. (1996) On the mechanisms of dissolution of bunsenite (NiO(s)) and other simple oxide minerals. Journal of Colloid and Interface Science 178, 176-185.

    Google Scholar 

  • Ludwig C., Casey W. H., and Rock P. A. (1995) Prediction of ligand-promoted dissolution rates from the reactivities of aqueous complexes. Nature 375, 44-47.

    Google Scholar 

  • Lundstrom U. and Ohman L.-O. (1990) Dissolution of feldspars in the presence of natural organic solutes. Journal of Soil Science 41, 359-369.

    Article  Google Scholar 

  • Machesky M. L. (1989) Influence of temperature on ion adsorption by hydrous metal oxides. In Chemical Modeling of Aqueous System II, Vol. 416 (ed. D. C. Melchior and R. L. Bassett), pp. 282-292. American Chemical Society.

    Google Scholar 

  • MacInnis I. N. and Brantley S. L. (1992) The role of dislocations and surface mor-phology in calcite dissolution. Geochimica et Cosmochimica Acta 56(3), 1113-1126.

    Google Scholar 

  • MacInnis I. N. and Brantley S. L. (1993) Development of etch pit size distributions (PSD) on dissolving minerals. Chemical Geology 105(1-3), 31-49.

    Google Scholar 

  • Malmstr öm M. and Banwart S. (1997) Biotite dissolution at 25 C: The pH dependence of dissolution rate and stoichiometry. Geochimica et Cosmochimica Acta 61 (14),2779-2799.

    Google Scholar 

  • Mast M. A. and Drever J. I. (1987) The effect of oxalate on the dissolution rates of oligoclase and tremolite. Geochimica et Cosmochimica Acta 51(9), 2559-2568.

    Google Scholar 

  • Mazer J. J. and Walther J. V. (1994) Dissolution kinetics of silica glass as a function of pH between 40 and 85 C. Journal of Non-Crystalline Solids 170(1), 32-45.

    Google Scholar 

  • Mogk D. W. and Locke W. W. (1988) Application of auger electron spectroscopy (AES) to naturally weathered hornblende. Geochimica et Cosmochimica Acta 52 (10),2537-2542.

    Google Scholar 

  • Morse J. W. (1978) Dissolution kinetics on calcium carbonate in sea water VI. The near equilibrium dissolution kinetics of calcium carbonate-rich deep sea sediments. American Journal of Science 278, 344-353.

    Google Scholar 

  • Muir I. J., Bancroft M., Shotyk W., and Nesbitt H. W. (1990) A SIMS and XPS study of dissolving plagioclase. Geochimica et Cosmochimica Acta 54, 2247-2256.

    Google Scholar 

  • Mukhopadhyay B. and Walther J. V. (2001) Acid-base chemistry of albite surfaces in aqueous solutions at standard temperature and pressure. Chemical Geology 174,415-443.

    Google Scholar 

  • Murphy W. M., Pabalan R. T., Prikryl J. D., and Goulet C. J. (1992) Dissolution rate and solubility of analcime at 25 C. International Conference on Water-Rock Interaction 7, 107-110. Balkema Pub. (Park City, UT).

    Google Scholar 

  • Nagy K. L. (1995) Dissolution and precipitation kinetics of sheet silicates. In Chemical Weathering Rates of Silicate Minerals, Vol. 31 (ed. A. F. White and S. L. Brantley), pp. 173-225. Mineralogical Society of America.

    Google Scholar 

  • Nagy K. L., Blum A. E., and Lasaga A. C. (1991) Dissolution and precipitation kinetics of kaolinite at 80 C and pH 3: The dependence on solution saturation state. Amer. J. Science 291(649-686).

    Google Scholar 

  • Nagy K. L. and Lasaga A. C. (1992) Dissolution and precipitation kinetics of gibbsite at 80 C and pH 3: The dependence on solution saturation state. Geochimica et Cosmochimica Acta 56, 3093-3111.

    Google Scholar 

  • Nagy K. L., Steefel C. I., Blum A. E., and Lasaga A. C. (1990) Dissolution and pre-cipitation kinetics of kaolinite: Initial results at 80 C with application to porosity evolution in a sandstone. American Association of Petroleum Geology Memoir 49,85-101.

    Google Scholar 

  • Nancollas G. H. and Reddy M. M. (1971) The crystallization of calcium carbonate II. Calcite growth mechanism. Journal of Colloid Interface Science 37, 824-830.

    Google Scholar 

  • Neaman A., Chorover J., and Brantley S. L. (2005) Implications of the evolution of organic acid moieties for basalt weathering over geologic time. American Journal of Science 305, 147-185.

    Google Scholar 

  • Neaman A., Chorover J., and Brantley S. L. (2006) Effects of organic ligands on granite dissolution in batch experiments at pH 6. American Journal of Science 306,1-23.

    Google Scholar 

  • Nesbitt H. W., Macrae N. D., and Shotyk W. (1991) Congruent and incongruent dissolution of labradorite in dilute acidic salt solutions. Journal of Geology 99, 429-442.

    Google Scholar 

  • Nielsen A. (1983) Precipitates: Formation, coprecipitation, and aging. In Treatise on Analytical Chemistry (ed. I. M. Kolthoff and P. J. Elving), pp. 269-374. John Wiley & Sons, Inc.

    Google Scholar 

  • Nordstrom D. K. (1982) Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In Acid Sulfate Weathering, Vol. 10 (ed. M. Kral), pp. 37-56. Soil Science Society of America.

    Google Scholar 

  • Nordstrom D. K. (2000) Advances in the hydrogeochemistry and microbiology of acid mine waters. International Geology Review 42(6), 499-515.

    Google Scholar 

  • Ochs M. (1996) Influence of humified and non-humified natural organic compounds on mineral dissolution. Chemical Geology 132, 119-124.

    Google Scholar 

  • Ochs M., Brunner I., Stumm W., and Cosovic B. (1993) Effects of root exudates and humic substances on weathering kinetics. Water Air and Soil Pollution 68(1-2), 213-229.

    Google Scholar 

  • Oelkers E. H. (2001a) An experimental study of forsterite dissolution rates as a function of temperature and aqueous Mg and Si concentrations. Chemical Geology 175(3-4), 485-494.

    Google Scholar 

  • Oelkers E. H. (2001b) General kinetic description of multioxide silicate mineral and glass dissolution. Geochimica et Cosmochimica Acta 65(21), 3703-3719.

    Google Scholar 

  • Oelkers E. H. and Gislason S. R. (2001) The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si, and oxalic acid concentration at 25 C and pH = 3 and 11. Geochimica et Cosmochimica Acta 65(21), 3671-3681.

    Google Scholar 

  • Oelkers E. H. and Schott J. (1995) The dependence of silicate dissolution rates on their structure and composition. Eighth International Symposium on Water-Rock Interaction, WRI-8, 153-156.

    Google Scholar 

  • Oelkers E. H. and Schott J. (1998) Does organic acid adsorption affect alkalifeldspar dissolution rates? Chemical Geology 151(1-4), 235-245.

    Google Scholar 

  • Oelkers E. H. and Schott J. (1999) Experimental study of kyanite dissolution rates as a function of chemical affinity and solution composition. Geochimica et Cosmochimica Acta 63(6), 785-797.

    Google Scholar 

  • Oelkers E. H. and Schott J. (2001) An experimental study of enstatite dissolution rates as a function of pH, temperature, and aqueous Mg and Si concentration, and the mechanism of pyroxene/pyroxenoid dissolution. Geochimica et Cosmochimica Acta 65(8), 1219-1231.

    Google Scholar 

  • Oelkers E. H., Schott J., and Devidal J.-L. (1994) The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochimica et Cosmochimica Acta 58(9), 2011-2024.

    Google Scholar 

  • Oxburgh R., Drever J. I., and Sun Y. (1994) Mechanism of plagioclase dissolution in acid solution at 25 C. Geochimica et Cosmochimica Acta 58(2), 661-669.

    Google Scholar 

  • Paces T. (1973) Steady-state kinetics and equilibrium between ground water and granitic rock. Geochimica et Cosmochimica Acta 37(12), 2641-2663.

    Google Scholar 

  • Palandri J. L. and Kharaka Y. (2004) A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. In U.S. Ge-ological Survey Open File Report 2004-1068, pp. 64. U.S. Department of the Interior.

    Google Scholar 

  • Parks G. A. (1967) Aqueous surface chemistry of oxides and complex oxide minerals. In Equilibrium Concepts in Natural Water Systems, Vol. 67, pp. 121-160. American Chemical Society.

    Google Scholar 

  • Pelmenschikov A., Leszczynski J., and Pettersson G. M. (2001) Mechanism of dissolution of neutral silica surfaces: Including effect of self-healing. Journal of Physical Chemistry A 105, 9528-9532.

    Google Scholar 

  • Pelmenschikov A., Strandh H., Pettersson L. G. M., and Leszczyynski J. (2000) Journal of Physical Chemistry B 104, 5779.

    Google Scholar 

  • Perez J. R., Banwart S., and Puigdomenech I. (2005) The kinetics of O2(aq) reduction by structural ferrous iron in naturally occurring ferrous silicate minerals. Applied Geochemistry 20, 2003-2016.

    Google Scholar 

  • Plummer L. N., Wigley T. M. L., and Parkhurst D. L. (1978) The kinetics of calcite dissolution in CO2 - water systems at 5 to 60 C and 0.0 to 1.0 atm CO2 . American Journal of Science 278, 179-216.

    Google Scholar 

  • Pokrovski G. S. and Schott J. (1998) Experimental study of the complexation of silicon and germanium with aqueous organic species: Implications for germa-nium and silicon transport and Ge/Si ratio in natural waters. Geochimica et Cos-mochimica Acta 62(21-22), 3413-3428.

    Google Scholar 

  • Pokrovsky O. S. and Schott J. (2000) Kinetics and mechanism of forsterite dissolution at 25 C and pH from 1 to 12. Geochimica et Cosmochimica Acta 64(19), 3313-3325.

    Google Scholar 

  • Polster W. (1994) Hydrothermal precipitation and dissolution of silica Part I. Conditions in geothermal fields and sedimentary basins, Part 2. Experimental evaluation of kinetics. Ph.D., Pennsylvania State University.

    Google Scholar 

  • Poulson S. R., Drever J. I., and Stillings L. L. (1997) Aqueous Si-oxalate complexing, oxalate adsorption onto quartz, and the effect of oxalate upon quartz dissolution rates. Chemical Geology 140(1-2), 1-7.

    Google Scholar 

  • Reddy M. M. and Nancollas G. H. (1971) The crystallization of calcium carbonate I. Isotopic exchange and kinetics. Journal of Colloid Interface Science 36, 166-172.

    Google Scholar 

  • Rickard D. and Sjoberg E. L. (1983) Mixed kinetic control of calcite dissolution rates. American Journal of Science 283, 815-830.

    Google Scholar 

  • Rimstidt J. D. and Barnes H. L. (1980) The kinetics of silica-water reactions. Geochimica et Cosmochimica Acta 44(11), 1683-1700.

    Google Scholar 

  • Rimstidt J. D., Chermak J. A., and Gagen P. M. (1994) Rates of reaction of galena, sphalerite, chalcopyrite, and arsenopyrite with Fe(III) in acidic solutions. In En-vironmental Geochemistry of Sulfide Oxidation, Vol. 550 (ed. C. N. Alpers and D. W. Blowes), pp. 2-13. American Chemical Society.

    Google Scholar 

  • Rimstidt J. D. and Newcomb W. D. (1993) Measurement and analysis of rate data: The rate of reaction of ferric iron with pyrite. Geochimica et Cosmochimica Acta 57 (9),1919-1934.

    Google Scholar 

  • Rose N. M. (1991) Dissolution rates of prehnite, epidote, and albite. Geochimica et Cosmochimica Acta 55(11), 3273-3286.

    Google Scholar 

  • Rosso J. J. and Rimstidt J. D. (2000) A high resolution study of forsterite dissolution rates. Geochimica et Cosmochimica Acta 64(5), 797-811.

    Google Scholar 

  • Schott J. (1990) Modeling of the dissolution of strained and unstrained multiple oxides: The surface speciation approach. In Aquatic Chemical Kinetics (ed. W. Stumm), pp. 337-365. John Wiley & Sons, Inc.

    Google Scholar 

  • Schott J. and Berner R. A. (1983) X-ray photoelectron studies of the mechanism of iron silicate dissolution during weathering. Geochimica et Cosmochimica Acta 47,2233-2240.

    Google Scholar 

  • Schott J. and Berner R. A. (1985) Dissolution mechanisms of pyroxenes and olivines during weathering. In The Chemistry of Weathering, Vol. 149 (ed. J. I. Drever). D. Reidel.

    Google Scholar 

  • Schott J., Berner R. A., and Sjoberg E. L. (1981) Mechanism of pyroxene and amphibole weathering: I. Experimental studies of iron-free minerals. Geochimica et Cosmochimica Acta 45(11), 2123-2135.

    Google Scholar 

  • Schott J., Brantley S. L., Crerar D., Guy C., Borcsik M., and Willaime C. (1989a) Dissolution kinetics of strained calcite. Geochimica et Cosmochimica Acta 53(2), 373-382.

    Google Scholar 

  • Schott J. and Oelkers E. H. (1995) Dissolution and crystallization rates of silicate minerals as a function of chemical affinity. Pure and Applied Chemistry 67(6), 903-910.

    Google Scholar 

  • Schweda P. (1990) Kinetics and mechanisms of alkali feldspar dissolution at low temperatures. Ph.D., Stockholm University.

    Google Scholar 

  • Shiraki R. and Brantley S. L. (1995) Kinetics of near-equilibrium calcite precipitation at 100 C: An evaluation of elementary reaction-based and affinity-based rate laws. Geochimica et Cosmochimica Acta 59(8), 1457-1471.

    Google Scholar 

  • Shiraki R., Rock P. A., and Casey W. H. (2000) Dissolution of calcite in 0.1 M NaCl solution at room temperature: An atomic force microscope (AFM) study. Aquatic Geochemistry 6, 87-108.

    Google Scholar 

  • Siegel D. I. and Pfannkuch H. O. (1984) Silicate mineral dissolution at pH 4 and near standard temperature and pressure. Geochimica et Cosmochimica Acta 48, 197-201.

    Google Scholar 

  • Sigg L. and Stumm W. (1981) The interaction of anions and weak acids with the hydrous goethite (α - FeOOH) surface, Colloids Surf (2), 101-107.

    Google Scholar 

  • Sjoberg E. L. (1976) A fundamental equation for calcite dissolution kinetics. Geochimica et Cosmochimica Acta 40, 441-447.

    Google Scholar 

  • Sjoberg E. L. (1978) Kinetics and mechanism of calcite dissolution in aqueous solutions at low temperatures. Stockholm Contributions in Geology 32, 1-92.

    Google Scholar 

  • Sjoberg E. L. and Rickard D. (1983) Calcite dissolution kinetics: Surface speciation and the origin of the variable pH dependence. Chemical Geology 42, 119-136.

    Google Scholar 

  • Sjoberg E. L. and Rickard D. (1984) Calcite dissolution kinetics: Surface speciation and the origin of the variable pH dependence. Chemical Geology 42, 119-136.

    Google Scholar 

  • Sjoberg L. (1989) Kinetics and non-stoichiometry of labradorite dissolution. Sixth International Conference on Water-Rock Interaction (ed. D. L. Miles), 639-642. Balkema Pub. (Malvern, UK).

    Google Scholar 

  • Stephens J. C. and Hering J. G. (2004) Factors affecting the dissolution kinetics of volcanic ash soils: Dependencies on pH, CO2 , and oxalate. Applied Geochemistry 19,1217-1232.

    Google Scholar 

  • Stillings L. L. and Brantley S. L. (1995) Feldspar dissolution at 25 C and pH 3: Reaction stoichiometry and the effect of cations. Geochimica et Cosmochimica Acta 59(8), 1483-1496.

    Google Scholar 

  • Stillings L. L., Drever, J.I., Brantley, S., Sun, Y., and Oxburgh, R. (1996) Rates of feldspar dissolution at pH 3-7 with 0-8 M oxalic acid. Chemical Geology 132, 79-89.

    Google Scholar 

  • Stumm W. (1997) Reactivity at the mineral-water interface: Dissolution and inhibition. Colloids and Surfaces A: Physicochemical and Engineering Aspects 120, 143-166.

    Google Scholar 

  • Stumm W. and Furrer G. (1987) The dissolution of oxides and aluminum silicates: Examples of surface-coordination-controlled kinetics. In Aquatic Surface Chemistry: Chemical Processes at the Particle-Water Interface (ed. W. Stumm), pp. 197-220. John Wiley & Sons, Inc.

    Google Scholar 

  • Suter D., Banwart S., and Stumm W. (1991) Dissolution of hydrous iron(III) oxides by reductive mechanisms. Langmuir 7(4), 809-813.

    Google Scholar 

  • Suter D., Siffert C., Sulzberger B., and Stumm W. (1988) Catalytic dissolution of iron(III)(hydr)oxides by oxalic-acid in the presence of Fe(Ii). Naturwissenschaften 75(11), 571-573.

    Google Scholar 

  • Sverdrup H. U. (1990) The Kinetics of Base Cation Release Due to Chemical Weathering. Lund University Press.

    Google Scholar 

  • Sverjensky D. A. (1992) Linear free energy relations for predicting dissolution rates of solids. Nature 358(310-313).

    Google Scholar 

  • Sverjensky D. A. (1994) Zero-point-of-charge prediction from crystal chemistry and solvation theory. Geochimica et Cosmochimica Acta 58(14), 3123-3129.

    Google Scholar 

  • Taylor A. S., Blum J. D., and Lasaga A. C. (2000a) The dependence of labradorite dissolution and Sr isotope release rates on solution saturation state. Geochimica et Cosmochimica Acta 64(14), 2389-2400.

    Google Scholar 

  • Taylor A. S., Blum J. D., Lasaga A. C., and MacInnis I. N. (2000b) Kinetics of dissolution and Sr release during biotite and phologopite weathering. Geochimica et Cosmochimica Acta 64(7), 1191-1208.

    Google Scholar 

  • Teng H. H., Dove P. M., and DeYoreo J. J. (2000) Kinetics of calcite growth: Surface processes and relationships to macroscopic rate laws. Geochimica et Cosmochimica Acta 64, 2255-2266.

    Google Scholar 

  • Tester J. W., Worley W. G., Robinson B. A., Grigsby C. O., and Feerer J. L. (1994) Correlating quartz dissolution kinetics in pure water from 25 to 625 C. Geochimica et Cosmochimica Acta 58, 2407-2420.

    Google Scholar 

  • Tsomaia N., Brantley S. L., Hamilton J. P., Pantano C. G., and Mueller K. T. (2003) NMR evidence for formation of octahedral and tetrahedral Al and repolymer-ization of the Si network during dissolution of aluminosilicate glass and crystal. American Mineralogist 88, 54-67.

    Google Scholar 

  • van Hees P. A. W., Lundstrom U. S., and Morth C.-M. (2002) Dissolution of microcline and labradorite in a forest O horizon extract: The effect of naturally occurring organic acids. Chemical Geology 189, 199-211.

    Google Scholar 

  • Walther J. V. (1996) Relation between rates of aluminosilicate mineral dissolution, pH, temperature, and surface charge. American Journal of Science 296, 693-728.

    Google Scholar 

  • Watteau F. and Berthelin J. (1994) Microbial dissolution of iron and aluminum from soil minerals: Efficiency and specificity of hydroxamate siderophores compared to aliphatic acids. European Journal of Soil Biology 30(1), 1-9.

    Google Scholar 

  • Wehrli B. (1990) Redox reactions of metal ions at mineral surfaces. In Aquatic Chemical Kinetics: Reaction Rates of Processes in Natural Waters (ed. W. Stumm), pp. 311-336. John Wiley & Sons, Inc.

    Google Scholar 

  • Weissbart E. J. and Rimstidt J. D. (2000) Wollastonite: Incongruent dissolution and leached layer formation. Geochimica et Cosmochimica Acta 64(23), 4007-4016.

    Google Scholar 

  • Welch S. A. and Ullman W. J. (1996) Feldspar dissolution in acidic and organic solutions: Compositional and pH dependence of dissolution rate. Geochimica et Cosmochimica Acta 60, 2939-2948.

    Google Scholar 

  • Welch S. A. and Ullman W. J. (1999) The effect of microbial glucose metabolism on bytownite feldspar dissolution rates between 5 degrees and 35 degrees C. Geochimica et Cosmochimica Acta 63, 3247-3259.

    Google Scholar 

  • Westrich H. R., Cygan R. T., Casey W. H., Zemitis C., and Arbold G. W. (1993) The dissolution kinetics of mixed-cation orthosilicate minerals. American Journal of Science 293(9), 869-893.

    Google Scholar 

  • White A. F. and Brantley S. L. (1995) Chemical weathering rates of silicate miner-als: An overview. In Chemical Weathering Rates of Silicate Minerals, Vol. 31 (ed. A. F. White and S. L. Brantley), pp. 1-22. Mineralogical Society of America.

    Google Scholar 

  • White A. F. and Brantley S. L. (2003) The effect of time on the weathering of silicate minerals: Why do weathering rates differ in the laboratory and field? Chemical Geology 202, 479-506.

    Google Scholar 

  • White A. F. and Yee A. (1985) Aqueous oxidation-reduction kinetics associated with coupled electron-cation transfer from iron-containing silicates at 25 C. Geochimica et Cosmochimica Acta 49, 1263-1275.

    Google Scholar 

  • Wieland E., Wehrli B., and Stumm W. (1988) The coordination chemistry of weathering: III. A generalization in the dissolution rates of minerals. Geochimica et Cosmochimica Acta 52(8), 1969-1981.

    Google Scholar 

  • Wogelius R. A. and Walther J. V. (1991) Olivine dissolution at 25 C: Effects of pH, CO2 , and organic acids. Geochimica et Cosmochimica Acta 55(4), 943-954.

    Google Scholar 

  • Wogelius R. A. and Walther J. V. (1992) Olivine dissolution kinetics at near-surface conditions. Chemical Geology 97(1-2), 101-112.

    Google Scholar 

  • Wood B. J. and Walther J. V. (1983) Rates of hydrothermal reactions. Science 222, 413-415.

    Google Scholar 

  • Xie Z. (1994) Surface properties of silicates, their solubility and dissolution kinetics. Ph.D., Northwestern University.

    Google Scholar 

  • Xie Z. and Walther J. V. (1994) Dissolution stoichiometry and adsorption of alkali and alkaline earth elements to the acid-reacted wollastonite surface at 25 C. Geochimica et Cosmochimica Acta 58(12), 2587-2598.

    Google Scholar 

  • Yoshida T., Hayashi K., and Ohmoto H. (2002) Dissolution of iron hydroxides by marine bacterial siderophore. Chemical Geology 184(1-2), 1-9.

    Google Scholar 

  • Zhang H., Bloom P. R., and Nater E. A. (1990) Morphology and chemistry of hornblende dissolution products in acid solutions. In Soil Micromorphology: A Basic and Applied Science; Developments in Soil Science, Vol. 19 (ed. L. A. Douglas), pp. 551-556. Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brantley, S. (2008). Kinetics of Mineral Dissolution. In: Brantley, S., Kubicki, J., White, A. (eds) Kinetics of Water-Rock Interaction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73563-4_5

Download citation

Publish with us

Policies and ethics