Skip to main content

Key Roles for AMP-activated Protein Kinase in the Function of the Carotid Body?

  • Chapter
Integration in Respiratory Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 605))

The carotid bodies play a critical role in initiating compensatory ventilatory responses to hypoxia. However, the complete mechanism by which hypoxia excites the oxygen-sensing carotid body type 1 cells has not been fully defined. We have previously proposed that the enzyme adenosine monophosphateactivated protein kinase (AMPK) may couple hypoxic inhibition of mitochondrial oxidative phosphorylation to carotid body type I cell excitation (Evans, Mustard, Wyatt, Peers, Dipp, Kumar, Kinnear and Hardie 2005). Here we discuss evidence that AMPK is a key requirement for hypoxic chemotransduction by the carotid body. In addition, we postulate upon a role for AMPK in the plasticity observed in the carotid body during both chronic and chronic intermittent hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Buckler, K.J. (1997) A novel oxygen-sensitive potassium current in rat carotid body type I cells. J. Physiol. 498 (Pt. 3), 649–662.

    CAS  PubMed  Google Scholar 

  • Buckler, K.J. and Vaughan-Jones, R.D. (1994) Effects of hypoxia on membrane potential and intracellular calcium in rat neonatal carotid body type I cells. J. Physiol. 476, 423–428.

    CAS  PubMed  Google Scholar 

  • Buckler, K.J. and Vaughan-Jones, R.D. (1998) Effects of mitochondrial uncouplers on intra-cellular calcium, pH and membrane potential in rat carotid body type I cells. J. Physiol. 513 (Pt. 3), 819–833.

    Article  CAS  PubMed  Google Scholar 

  • Duchen, M.R. and Biscoe, T.J. (1992a) Mitochondrial function in type I cells isolated from rabbit arterial chemoreceptors. J. Physiol. 450, 13–31.

    CAS  PubMed  Google Scholar 

  • Duchen, M.R. and Biscoe, T.J. (1992b) Relative mitochondrial membrane potential and [Ca2+]i in type I cells isolated from the rabbit carotid body. J. Physiol. 450, 33–61.

    CAS  PubMed  Google Scholar 

  • Evans, A.M., Mustard, K.J., Wyatt, C.N., Peers, C., Dipp, M., Kumar, P., Kinnear, N.P. and Hardie, D.G. (2005) Does AMP-activated protein kinase couple inhibition of mitochondrial oxidative phosphorylation by hypoxia to calcium signaling in O2-sensing cells? J. Biol. Chem. 280, 41504–41511.

    Article  CAS  PubMed  Google Scholar 

  • Eyzaguirre, C., Koyano, H. and Taylor, J.R. (1965) Presence of acetylcholine and transmitter release from carotid body chemoreceptors. J. Physiol. 178, 463–476.

    CAS  PubMed  Google Scholar 

  • Fidone, S.J., Gonzalez, C., Dinger, B.G. and Hanson, G.R. (1988) Mechanisms of chemo-transmission in the mammalian carotid body. Prog. Brain Res. 74, 169–179.

    Article  CAS  PubMed  Google Scholar 

  • Hardie, D.G. (2004). The AMP-activated protein kinase pathway–new players upstream and downstream. J. Cell Sci. 117, 5479–5487.

    Article  CAS  PubMed  Google Scholar 

  • Hescheler, J., Delpiano, M.A., Acker, H. and Pietruschka, F. (1989) Ionic currents on type-I cells of the rabbit carotid body measured by voltage-clamp experiments and the effect of hypoxia. Brain Res. 486, 79–88.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, J.T., Lee, M., Jung, S.N., Lee, H.J., Kang, I., Kim, S.S. and Ha, J. (2004) AMP-activated protein kinase activity is required for vanadate-induced hypoxia-inducible factor 1alpha expression in DU145 cells. Carcinogenesis 25, 2497–2507.

    Article  CAS  PubMed  Google Scholar 

  • Lahiri, S., Rumsey, W.L., Wilson, D.F. and Iturriaga, R. (1993) Contribution of in vivo mi-crovascular PO2 in the cat carotid body chemotransduction. J. Appl. Physiol. 75, 1035–1043.

    CAS  PubMed  Google Scholar 

  • Lee, M., Hwang, J.T., Lee, H.J., Jung, S.N., Kang, I., Chi, S.G., Kim, S.S. and Ha, J. (2003) AMP-activated protein kinase activity is critical for hypoxia-inducible factor-1 transcriptional activity and its target gene expression under hypoxic conditions in DU145 cells. J. Biol. Chem. 278, 39653–39661.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Barneo, J., Lopez-Lopez, J.R., Urena, J. and Gonzalez, C. (1988) Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science 241, 580–582.

    Article  CAS  PubMed  Google Scholar 

  • Mills, E. and Jobsis, F.F. (1970) Simultaneous measurement of cytochrome a3 reduction and chemoreceptor afferent activity in the carotid body. Nature 225, 1147–1149.

    Article  CAS  PubMed  Google Scholar 

  • Mills, E. and Jobsis, F.F. (1972). Mitochondrial respiratory chain of carotid body and chemo-receptor response to changes in oxygen tension. J. Neurophysiol. 35, 405–428.

    CAS  PubMed  Google Scholar 

  • Mosqueira, M. and Iturriaga, R. (2002). Carotid body chemosensory excitation induced by nitric oxide: involvement of oxidative metabolism. Respir. Physiol. Neurobiol. 131, 175–187.

    Article  CAS  PubMed  Google Scholar 

  • Mulligan, E., Lahiri, S. and Storey, B.T. (1981) Carotid body O2 chemoreception and mitochondrial oxidative phosphorylation. J. Appl. Physiol. 51, 438–446.

    CAS  PubMed  Google Scholar 

  • Peers, C. (1990) Hypoxic suppression of K+ currents in type I carotid body cells: selective effect on the Ca2(+)-activated K+ current. Neurosci. Lett. 119, 253–256.

    Article  CAS  PubMed  Google Scholar 

  • Pepper, D.R., Landauer, R.C. and Kumar, P. (1995) Postnatal development of CO2-O2 interaction in the rat carotid body in vitro. J. Physiol. 485 (Pt. 2), 531–541.

    CAS  PubMed  Google Scholar 

  • Perez-Garcia, M.T., Colinas, O., Miguel-Velado, E., Moreno-Dominguez, A. and Lopez-Lopez, J.R. (2004) Characterization of the Kv channels of mouse carotid body chemoreceptor cells and their role in oxygen sensing. J. Physiol. 557, 457–471.

    Article  CAS  PubMed  Google Scholar 

  • Prabhakar, N.R., Peng, Y.J., Jacono, F.J., Kumar, G.K. and Dick, T.E. (2005) Cardiovascular alterations by chronic intermittent hypoxia: importance of carotid body chemoreflexes. Clin. Exp. Pharmacol. Physiol. 32, 447–449.

    Article  CAS  PubMed  Google Scholar 

  • Salt, I., Celler, J.W., Hawley, S.A., Prescott, A., Woods, A., Carling, D. and Hardie, D.G. (1998) AMP-activated protein kinase: greater AMP dependence, and preferential nuclear localization, of complexes containing the alpha2 isoform. Biochem. J. 334 (Pt. 1), 177–187.

    CAS  PubMed  Google Scholar 

  • Stea, A. and Nurse, C.A. (1991) Whole-cell and perforated-patch recordings from O2-sensitive rat carotid body cells grown in short- and long-term culture. Pflugers Arch. 418, 93–101.

    Article  CAS  PubMed  Google Scholar 

  • Wyatt, C.N. and Buckler, K.J. (2004) The effect of mitochondrial inhibitors on membrane currents in isolated neonatal rat carotid body type I cells. J. Physiol. 556, 175–191.

    Article  CAS  PubMed  Google Scholar 

  • Wyatt, C.N., Kumar, P., Aley, P., Peers, C., Hardie, D.G. and Evans, A.M. (2006a) Does AMP-activated protein kinase couple hypoxic inhibition of oxidative phosphorylation to carotid body excitation? Adv. Exp. Med. Biol. 580, 191–196; discussion 351–199.

    Google Scholar 

  • Wyatt, C.N., Mustard, K.J., Pearson, S.A., Dallas, M.L., Atkinson, L., Kumar, P., Peers, C, Hardie, D.G. and Evans, A.M. (2007) AMP-activated protein kinase mediates carotid body excitation by hypoxia. J. Biol. Chem. 282, 8092–8098.

    Article  CAS  PubMed  Google Scholar 

  • Wyatt, C.N., Peers, C., Kumar, P., Hardie, D.G. and Evans, A.M. (2006b) The effect of AMP-kinase activators on oxygen-sensing type-I cells of the rat carotid body. British Journal of Pharmacology pA23, 049P.

    Google Scholar 

  • Wyatt, C.N., Wright, C., Bee, D. and Peers, C. (1995) O2-sensitive K+ currents in carotid body chemoreceptor cells from normoxic and chronically hypoxic rats and their roles in hypoxic chemotransduction. Proc. Natl. Acad. Sci. USA 92, 295–299.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Wyatt, C.N., Pearson, S.A., Kumar, P., Peers, C., Hardie, D.G., Evans, A.M. (2008). Key Roles for AMP-activated Protein Kinase in the Function of the Carotid Body?. In: Poulin, M.J., Wilson, R.J.A. (eds) Integration in Respiratory Control. Advances in Experimental Medicine and Biology, vol 605. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73693-8_11

Download citation

Publish with us

Policies and ethics