Skip to main content

Abstract

In this chapter, we explore technology developments for the rapid detection, identification, and viability assessment of endospore-forming pathogens with a focus on Bacillus anthracis. First, we introduce various toxin-producing species and their role as bioinsecticides, probiotics, and bioweapons. We also review the role of endospores as biological indicators (i.e., dosimeters) for evaluating sterilization regimens, such as autoclaving and wastewater remediation. Monitoring the effectiveness of cleaning and sterilization regimens to maintain good hygiene is required in several major industries, including health care, food, and pharmaceutical industries. In the next section, we review recent developments in DNA-, immuno-, and dipicolinic acid assays, and their applications for detection and monitoring of Bacillus anthracis and other endospore-forming pathogens. Finally, we review viability assays capable of rapid validation of endospore inactivation after sterilization, including assays based on ATP synthesis during stage II germination, and DPA release during stage I germination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajithkumar B, Ajithkumar VP, Iriye, et al. (2003) Spore-forming Serratia marcescens subsp sakuensis subsp nov., isolated from a domestic wastewater treatment tank. International Journal of Systematic and Evolutionary Microbiology 53:253–258

    Google Scholar 

  • Allen SD, Emery CL and Lyerly DM (2003) Clostridium. In Murray P, Baron E, Pfaller M, Jorgensen J, and Yolken R (eds) Manual of Clinical Microbiology. ASM Press: Washington D.C., pp 835–856

    Google Scholar 

  • Andersen GL,Simchock JM and Wilson KH (1996) Identification of a region of genetic variability among Bacillus anthracis strains and related species. Journal of Bacteriology 178(2):377–384

    Google Scholar 

  • Azizbekyan RR (2004) The fungicidal activity of spore-forming bacteria. In Ricca E, Henriques AO, and Cutting SM (eds) Bacterial Spore Formers - Probiotics and Emerging Applications. Horizon Bioscience: Norfolk, pp 229–236

    Google Scholar 

  • Baeumner AJ, Leonard B, McElwee J et al. (2004) A rapid biosensor for viable B. anthracis spores. Analytical and Bioanalytical Chemistry 380(1):15–23

    Article  Google Scholar 

  • Baez LA, Juneja VK, Thayer DW et al. (1997) Evaluation of PCR and DNA hybridization protocols for detection of viable enterotoxigenic Clostridium perfringens in irradiated beef. Journal of Food Safety 17(4):229–238

    Article  Google Scholar 

  • Balassa G, Milhaud P, Raulet E, Silva MT, Sousa JC (1979) A Bacillus subtilis mutant requiring dipicolinic acid for the development of heat-resistant spores. Journal of General Microbiology 110(2):365–379

    Google Scholar 

  • Balzani V (1990) Supramolecular photochemistry. Pure and Applied Chemistry 62(6):1099–1102

    Article  Google Scholar 

  • Balzani V, Decola L, Prodi L et al. (1990) Photochemistry of supramolecular species. Pure and Applied Chemistry 62(8):1457–1466

    Article  Google Scholar 

  • Barany F (1991) The ligase chain reaction in a PCR world. PCR Methods and Applications 1(1):5–16

    Google Scholar 

  • Baron PA and Willeke K (2001) Aerosol Measurement: Principles, Techniques, and Applications. Wiley, John & Sons, Inc.: New York

    Google Scholar 

  • Basol MS and Gogus U (1996) Methods of antibiotic applications related to microbiological quality of lamb by PCA and bioluminescence. Journal of Food Science 61:348–349

    Article  Google Scholar 

  • Beeby A, Botchway SW, Clarkson IM, Faulkner S, Parker AW, Parker D, Williams JA (2000) Luminescence imaging microscopy and lifetime mapping using kinetically stable lanthanide (III) complexes. Journal of Photochemistry and Photobiology B 57(2-3):83–89

    Article  Google Scholar 

  • Belgrader P, Benett W, Hadley D et al. (1998a) Rapid pathogen detection using a microchip PCR array instrument. Clinical Chemistry 44(10):2191–2194

    Google Scholar 

  • Belgrader P, Smith JK, Weedn VW et al. (1998b) Rapid PCR for identity testing using a battery-powered miniature thermal cycler. Journal of Forensic Sciences 43(2):315–319

    Google Scholar 

  • Belgrader P, Benett W, Hadley D et al. (1999a) Infectious disease - PCR detection of bacteria in seven minutes. Science 284(5413):449–450

    Article  Google Scholar 

  • Belgrader P, Hansford D, Kovacs GTA et al. (1999b) A minisonicator to rapidly disrupt bacterial spores for DNA analysis. Analytical Chemistry 71(19):4232–4236

    Article  Google Scholar 

  • Belgrader P, Okuzumi M, Pourahmadi F et al. (2000) A microfluidic cartridge to prepare spores for PCR analysis. Biosensors & Bioelectronics 14(10-11):849–852

    Article  Google Scholar 

  • Belgrader P, Young S, Yuan B et al. (2001) A battery-powered notebook thermal cycler for rapid multiplex real time PCR analysis. Analytical Chemistry 73(2):286–289

    Article  Google Scholar 

  • Bell CA, Uhl JR, Hadfield TL et al. (2002) Detection of Bacillus anthracis DNA by LightCycler PCR. Journal of Clinical Microbiology 40(8):2897–2902

    Article  Google Scholar 

  • Birmingham JG (2006) Plasma lysis for identification of bacterial spores using ambient-pressure nonthermal discharges. IEEE Transactions on Plasma Science 34(4):1270–1274

    Article  Google Scholar 

  • Blumenthal T (1979) Qbeta RNA replicase and protein synthesis elongation factors EF-Tu and EF-Ts. Methods in Enzymology 60:628–638

    Article  Google Scholar 

  • Board SS and Council NR (2000) Preventing the Forward Contamination of Europa. National Academy Press: Washington, D.C.

    Google Scholar 

  • Bode E, Hurtle W and Norwood D (2004) Real-time PCR assay for a unique chromosomal sequence of Bacillus anthracis. Journal of Clinical Microbiology 42(12):5825–5831

    Article  Google Scholar 

  • Borthwick KAJ, Love TE, McDonnell MB et al. (2005) Improvement of immunodetection of bacterial spore antigen by ultrasonic cavitation. Analytical Chemistry 77(22):7242–7245

    Article  Google Scholar 

  • Bruno JG and Yu H (1996) Immunomagnetic-electrochemiluminescent detection of Bacillus anthracis spores in soil matrices. Applied and Environmental Microbiology 62(9):3474–3476

    Google Scholar 

  • Cable ML, Kirby JP, Sorasaenee K et al. (2007) Bacterial spore detection by [Tb3+(macrocycle)(dipicolinate)] luminescence. Journal of the American Chemical Society 129:1474–1475

    Article  Google Scholar 

  • Caipo M, Duffy S, Zhao L et al. (2002) Bacillus megaterium spore germination is influenced by inoculum size. Journal of Applied Microbiology 92:879–884

    Article  Google Scholar 

  • Cano RJ and Borucki MK (1995) Revival and identification of bacterial spores in 25-million-year-old to 40-million-year-old Dominican amber. Science 268(5213):1060–1064

    Article  Google Scholar 

  • Chappelle EW and Levin GV (1968) Use of the firefly bioluminescence reaction for rapid detection and counting of bacteria. Biochemical Medicine 2:41–52

    Article  Google Scholar 

  • Chattopadhyay A, Bhatnagar NB and Bhatnagar R (2004) Bacterial insecticidal toxins. Critical Reviews in Microbiology 30(1):33–54

    Article  Google Scholar 

  • Chen S (2007) One hour molecular diagnostics at the bedside. Next Generation Pharmaceutical issue 7, http://www.ngpharma.com

    Google Scholar 

  • Cherif A, Borin S, Rizzi A et al. (2003a) Bacillus anthracis diverges from related clades of the Bacillus cereus group in 16S-23S ribosomal DNA intergenic transcribed spacers containing tRNA genes. Applied and Environmental Microbiology 69(1):33–40

    Google Scholar 

  • Cherif A, Brusetti L, Borin S et al. (2003b) Genetic relationship in the ’Bacillus cereus group’ by rep-PCR fingerprinting and sequencing of a Bacillus anthracis-specific rep-PCR fragment. Journal of Applied Microbiology 94(6):1108–1119

    Article  Google Scholar 

  • Cohn F (1876) Untersuchungen uber Bacterien. IV. Beitrage zur Biologie der Bacillen. Beitr. Biol. Pflanz. 2:249–276

    Google Scholar 

  • Colwell R and Grimes D (2000) Non-Culturable Microorganisms in the Environment. ASM Press: Washington, D.C.

    Google Scholar 

  • Compton J (1991) Nucleic-acid sequence-based amplification. Nature 350(6313): 91–92

    Article  Google Scholar 

  • Connally R, Veal D and Piper J (2002) High resolution detection of fluorescently labeled microorganisms in environmental samples using time-resolved fluorescence microscopy. FEMS Microbiology Ecology 41( 3): 239–245

    Article  Google Scholar 

  • Connon SA and Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Applied and Environmental Microbiology 68(8):3878–3885

    Article  Google Scholar 

  • Cox CS and Wathes CM (eds) (1995) Bioaerosols Handbook: Handbook of Samplers and Sampling. CRC Press: Boca Raton, FL

    Google Scholar 

  • Cross J (1992) Harnessing the firefly. Food Manufacture 67:25

    Google Scholar 

  • Cutting SM (2004) Spores as oral vaccines. In Ricca E, Henriques AO, Cutting SM (eds) Bacterial Spore Formers - Probiotics and Emerging Applications. Horizon Bioscience: Norfolk, pp 201–206

    Google Scholar 

  • Daffonchio D, Borin S, Frova G et al. (1999) A randomly amplified polymorphic DNA marker specific for the Bacillus cereus group is diagnostic for Bacillus anthracis. Applied and Environmental Microbiology 65(3):1298–1303

    Google Scholar 

  • Dart RK (1996) Microbiology for the Analytical Chemist. The Royal Society of Chemistry: Cambridge, UK

    Google Scholar 

  • De BK, Bragg SL, Sanden GN et al. (2002) Two-component direct fluorescent-antibody assay for rapid identification Bacillus anthracis. Emerging Infectious Diseases 8(10):1060–1065

    Google Scholar 

  • Deere D, Porter J, Pickup R et al. (1996) Direct analysis of starved Aeromonas salmonicida. Journal of Fish Diseases 19(6):459–467

    Article  Google Scholar 

  • Desser H and Broda E (1965) Radiochemical determination of the endogenous and exogenous respiration of bacterial spores. Nature 206(4990):1270–1271

    Article  Google Scholar 

  • Dierick K (2005) Fatal family outbreak of Bacillus cereus-associated food poisoning. Journal of Clinical Microbiology 43(8):4277

    Article  Google Scholar 

  • Dirckx JH (1981) Virgil on anthrax. American Journal of Dermatopathology 3(2):191–195

    Google Scholar 

  • Dixon TC, Meselson M, Guillemin J et al. (1999) Anthrax. New England Journal of Medicine 341(11):815–826

    Article  Google Scholar 

  • Dobkin C, Mills DR, Kramer FR et al. (1979) RNA replication: required intermediates and the dissociation of template, product, and Q beta replicase. Biochemistry 18(10):2038–2044

    Article  Google Scholar 

  • Dombrowski H (1963) Bacteria from paleozoic salt deposits. Annals of the New York Academy of Sciences 108(2):453–460

    Article  Google Scholar 

  • Drago L, Lombardi A, De Veechi E et al. (2002) Real-time PCR assay for rapid detection of Bacillus anthracis spores in clinical samples. Journal of Clinical Microbiology 40(11):4399–4399

    Article  Google Scholar 

  • Drews G (2000) The roots of microbiology and the influence of Ferdinand Cohn on microbiology of the 19th century. FEMS Microbiology Reviews 24(3):225–249

    Article  Google Scholar 

  • Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, eds (2006) The Prokaryotes, A Handbook on the Biology of Bacteria, Vol. 4. Springer.

    Google Scholar 

  • Edwards KA, Harriet AC and Antje JB (2006) Bacillus anthracis: toxicology, epidemiology and current rapid-detection methods. Analytical and Bioanalytical Chemistry 384(1):73–84

    Article  Google Scholar 

  • Ellerbrok H, Nattermann H, Ozel M et al. (2002) Rapid and sensitive identification of pathogenic and apathogenic Bacillus anthracis by real-time PCR. FEMS Microbiology Letters 214(1):51–59

    Article  Google Scholar 

  • Elzi MV, Mallard K, Droz S et al. (2005) Polyphasic approach for identifying Bacillus spp. Journal of Clinical Microbiology 43(2):1010–1010

    Article  Google Scholar 

  • Espy MJ, Uhl JR, Sloan LM et al. (2006) Real-time PCR in clinical microbiology: Applications for a routine laboratory testing. Clinical Microbiology Reviews 19(1):165–256

    Article  Google Scholar 

  • Ezzell JW, Abshire TG, Little SF et al. (1990) Identification of Bacillus-anthracis by using monoclonal-antibody to cell-wall galactose-N-acetylglucosamine polysaccharide. Journal of Clinical Microbiology 28(2):223–231

    Google Scholar 

  • Farrell S, Halsall HB and Heineman WR (2005) Immunoassay for B-globigii spores as a model for detecting B-anthracis spores in finished water. Analyst 130(4):489–497

    Article  Google Scholar 

  • Fasanella A, Losito S, Adone R et al. (2003) PCR assay to detect Bacillus anthracis spores in heat-treated specimens. Journal of Clinical Microbiology 41(2):896–899

    Article  Google Scholar 

  • Felske ADM (2004) Ecology of Bacillus species in soil. In Ricca E, Henriques AO, Cutting SM (eds) Bacterial Spore Formers - Probiotics and Emerging Applications. Horizon Bioscience: Norfolk, pp 35–44

    Google Scholar 

  • Finlay WJJ (2000) Bacillus cereus produces most emetic toxin at lower temperatures. Letters in Applied Microbiology 31(5):385

    Article  Google Scholar 

  • Floriano PN, Christodoulides N, Romanovicz D et al. (2005) Membrane-based on-line optical analysis system for rapid detection of bacteria and spores. Biosensors & Bioelectronics 20(10):2079–2088

    Article  Google Scholar 

  • Foster SJ and Johnstone K (1990) Pulling the trigger: the mechanism of bacterial spore germination. Molecular Microbiology 4(1):137–141

    Article  Google Scholar 

  • Fritze D (2004a) Taxonomy and systematics of the aerobic endospore forming bacteria: Bacillus and related genera. In Ricca E, Henriques AO, Cutting SM (eds) Bacterial Spore Formers - Probiotics and Emerging Applications. Horizon Bioscience: Norfolk, pp 17–34

    Google Scholar 

  • Fritze D (2004b) Taxonomy of the genus Bacillus and related genera: The aerobic endospore-forming bacteria. Phytopathology 94(11):1245–1248

    Article  Google Scholar 

  • Fujinami Y, Kataoka M, Matsushita K et al. (2004) Sensitive detection of bacteria and spores using a portable bioluminescence ATP measurement assay system distinguishing from white powder materials. Journal of Health Science 50(2):126–132

    Article  Google Scholar 

  • Gattomenking DL, Yu H, Bruno JG et al. (1995) Sensitive detection of biotoxoids and bacterial-spores using an immunomagnetic electrochemiluminescence sensor. Biosensors & Bioelectronics 10(6-7):501–507

    Article  Google Scholar 

  • Gest H, Mandelstam J (1987) Longevity of microorganisms in natural environments. Microbiological Science 4(3):69–71

    Google Scholar 

  • Gohar M, Gilois N, Graveline R et al. (2005) A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes. Proteomics 5(14):3696–3711

    Article  Google Scholar 

  • Gould GW and Hurst A (1969) The Bacterial Spore. Academic Press, New York

    Google Scholar 

  • Gould GW (2005) History of science - spores: Lewis B Perry memorial lecture 2005. Journal of Applied Microbiology 101(3):507–513

    Article  Google Scholar 

  • Grenthe I (1961) Stability relationships among the rare earth dipicolinates. Journal of the American Chemical Society 83:360–364

    Article  Google Scholar 

  • Griffiths MW (1993) Applications of bioluminescence in the dairy industry. Journal of Dairy Science 76(10):3118–3125

    Article  Google Scholar 

  • Griffiths MW (1996) The role of ATP bioluminescence in the food industry: New light on old problems. Food Technology 50(6):64–66

    Google Scholar 

  • Griffiths WD and Decosemo GAL (1994) The assessment of bioaerosols - a critical-review. Journal of Aerosol Science 25(8):1425–1458

    Article  Google Scholar 

  • Griffiths WD, Stewart IW, Futter SJ et al. (1997) The development of sampling methods for the assessment of indoor bioaerosols. Journal of Aerosol Science 28(3):437–457

    Article  Google Scholar 

  • Han CS, Xie G, Challacombe JF et al. (2006) Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. Journal of Bacteriology 188(9):3382–3390

    Article  Google Scholar 

  • Hansen BM, Leser TD and Hendriksen NB (2001) Polymerase chain reaction assay for the detection of Bacillus cereus group cells. FEMS Microbiology Letters 202(2):209–213

    Article  Google Scholar 

  • Hanson RS, Halvorson HO, Curry MV et al. (1972) Mutants of Bacillus-cereus strain T that produce thermoresistant spores lacking dipicolinate and have low levels of calcium. Canadian Journal of Microbiology 18(7):1139–43

    Article  Google Scholar 

  • Hartley HA and Baeumner AJ (2003) Biosensor for the specific detection of a single viable B-anthracis spore. Analytical and Bioanalytical Chemistry 376(3):319–327

    Google Scholar 

  • Hashimoto T, Frieben WR and Conti SF (1969a) Germination of single bacterial spores. Journal of Bacteriology 98:1011–1020

    Google Scholar 

  • Hashimoto T, Frieben WR and Conti SF (1969b) Microgermination of Bacillus cereus spores. Journal of Bacteriology 100(3):1385–1392

    Google Scholar 

  • Hattori NN, Sakakibara TT, Kajiyama NN et al. (2003) Enhanced microbial biomass assay using mutant luciferase resistant to benzalkonium chloride. Analytical Biochemistry 319(2):287–95

    Article  Google Scholar 

  • Hausenbauer JM, Waites WM and Setlow P (1977) Biochemical properties of Clostridium bifermentans spores. Journal of Bacteriology. 129(2):1148–1150

    Google Scholar 

  • Helgason E, Okstad OA, Caugant DA et al. (2000) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis - One species on the basis of genetic evidence. Applied and Environmental Microbiology 66(6):2627–2630

    Article  Google Scholar 

  • Hellyer TJ, DesJardin LE, Hehman GL et al. (1999a) Quantitative analysis of mRNA as a marker for viability of Mycobacterium tuberculosis. Journal of Clinical Microbiology 37(2):290–295

    Google Scholar 

  • Hellyer TJ, DesJardin LE, Teixeira L et al. (1999b) Detection of viable Mycobacterium tuberculosis by reverse transcriptase-strand displacement amplification of mRNA. Journal of Clinical Microbiology 37(3):518–523

    Google Scholar 

  • Henriques AO and Moran CP (2000) Structure and assembly of the bacterial endospore coat. Methods 20:95–110

    Article  Google Scholar 

  • Henriques AO, Costa TV, Martins LO et al. (2004) The functional architecture and assembly of the spore coat. In Ricca E, Henriques AO, Cutting SM (eds) Bacterial Spore Formers - Probiotics and Emerging Applications. Horizon Bioscience: Norfolk, pp 65–86

    Google Scholar 

  • Herman L (1997) Detection of viable and dead Listeria monocytogenes by PCR. Food Microbiology 14:103–110

    Article  Google Scholar 

  • Higgins JA, Ibrahim MS, Knauert FK et al. (1999) Sensitive and rapid identification of biological threat agents. Food and Agricultural Security 894:130–148

    Google Scholar 

  • Higgins JA, Cooper M, Schroeder-Tucker L et al. (2003a) A field investigation of Bacillus anthracis contamination of U.S. Department of Agriculture and other Washington, D.C., buildings during the anthrax attack of October 2001. Applied and Environmental Microbiology 69(1):593–599

    Article  Google Scholar 

  • Higgins JA, Nasarabadi S, Karns JS et al. (2003b) A handheld real time thermal cycler for bacterial pathogen detection. Biosensors & Bioelectronics 18(9):1115–1123

    Article  Google Scholar 

  • Hills GM (1949a) Chemical factors in the germination of spore-bearing aerobes - the effect of yeast extract on the germination of Bacillus anthracis and its replacement by adenosine. Biochemical Journal 45(3):353–362

    Google Scholar 

  • Hills GM (1949b) Chemical factors in the germination of spore-bearing aerobes - the effects of amino-acids on the germination of Bacillus anthracis, with some observations on the relation of optical form to biological activity. Biochemical Journal 45(3):363–370

    Google Scholar 

  • Hills GM (1950) Chemical factors in the germination of spore-bearing aerobes - observations on the influence of species, strain and conditions of growth. Journal of General Microbiology 4(1):38–47

    Google Scholar 

  • Hindle AA, Hall EAH (1999) Dipicolinic acid (DPA) assay revisited and appraised for spore detection. Analyst 124(11):1599–1604

    Article  Google Scholar 

  • Hindson BJ, Brown SB, Marshall GD et al. (2004) Development of an automated sample preparation module for environmental monitoring of biowarfare agents. Analytical Chemistry 76(13):3492–3497

    Article  Google Scholar 

  • Hindson BJ, Makarewicz AJ, Setlur US et al. (2005a). APDS: the autonomous pathogen detection system. Biosensors & Bioelectronics 20(10):1925–1931

    Article  Google Scholar 

  • Hindson BJ, McBride MT, Makarewicz AJ et al. (2005b) Autonomous detection of aerosolized biological agents by multiplexed immunoassay with polymerase chain reaction confirmation. Analytical Chemistry 77(1):284–289

    Article  Google Scholar 

  • Hitchins AD, Kahn AJ and Slepecky RA (1968) Interference contrast and phase contrast microscopy of sporulation and germination of Bacillus megaterium. Journal of Bacteriology 96(5):1811–1817

    Google Scholar 

  • Hoch JA and Losick R (1997) Genome sequencing - Panspermia, spores and the Bacillus subtilis genome. Nature 390(6657):237–238

    Article  Google Scholar 

  • Hoffmaster AR, Fitzgerald CC, Ribot E et al. (2002a) Molecular subtyping of Bacillus anthracis and the 2001 bioterrorism-associated anthrax outbreak, United States. Emerging Infectious Diseases 8(10):1111–1116

    Google Scholar 

  • Hoffmaster AR, Meyer RF, Bowen MP et al. (2002b) Evaluation and validation of a real time polymerase chain reaction assay for rapid identification of Bacillus anthracis. Emerging Infectious Diseases 8(10):1178–1182

    Google Scholar 

  • Hoffmaster AR, Ravel J, Rasko DA et al. (2004) Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proceedings of the National Academy of Sciences 101(22):8449–8454

    Article  Google Scholar 

  • Holland PM, Abramson RD, Watson R et al. (1991) Detection of specific polymerase chain-reaction product by utilizing the 5’- 3’ exonuclease activity of Thermus-aquaticus DNA-polymerase. Proceedings of the National Academy of Sciences 88(16):7276–7280

    Article  Google Scholar 

  • Holt JG and Bergey DH (1994) Bergey’s Manual of Determinative Bacteriology. Lippincott Williams & Wilkins: Baltimore

    Google Scholar 

  • Horneck G, Bucker H and Reitz G (1994) Long-term survival of bacterial spores in space. Advances in Space Research: The Official Journal of the Committee on Space Research (COSPAR) 14(10):41–45

    Google Scholar 

  • Horrocks Jr. WD and Sudnick D (1981) Lanthanide ion luminescence probes of the structure of biological macromolecules. Accounts of Chemical Research 14:384–392

    Article  Google Scholar 

  • Horrocks Jr. WD (1984) Lanthanide ion luminescence in coordination chemistry and biochemistry. In Lippard SJ (ed) Progress in Inorganic Chemistry. John Wiley & Sons, Inc.: New York, pp 1–104

    Chapter  Google Scholar 

  • Hurst A and Gould GW (eds) (1983) The Bacterial Spore - Volume 2. Academic Press, Inc.: New York

    Google Scholar 

  • Ibrahim MS, Lofts RS, Jahrling PB et al. (1998) Real-time microchip PCR for detecting single-base differences in viral and human DNA. Analytical Chemistry 70(9):2013–2017

    Article  Google Scholar 

  • Ivanova N, Sorokin A, Anderson I et al. (2003) Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423(6935):87–91

    Article  Google Scholar 

  • Ivanovics G and Foldes J (1958) An immunospecific substance of Bacillus-cereus similar to polysaccharide obtained from Bacillus-anthracis. Naturwissenschaften 45(1):15–15

    Article  Google Scholar 

  • Jackson PJ, Walthers EA, Kalif AS et al. (1997) Characterization of the variable-number tandem repeats in vrrA from different Bacillus anthracis isolates. Applied and Environmental Microbiology 63(4):1400–1405

    Google Scholar 

  • Jackson PJ, Hugh-Jones ME, Adair DM et al. (1998) PCR analysis of tissue samples from the 1979 Sverdlovsk anthrax victims: The presence of multipleBacillus anthracis strains in different victims. Proceedings of the National Academy of Sciences 95(3):1224–1229

    Article  Google Scholar 

  • Jain R, Rivera MC, Moore JE et al. (2003) Non-clonal evolution of microbes. Biological Journal of the Linnean Society 79(1):27–32

    Article  Google Scholar 

  • Janssen FW, Lund AJ and Anderson LE (1958) Colorimetric assay for dipicolinic acid in bacterial spores. Science 127(3288):26–27

    Article  Google Scholar 

  • Janssen PH, Yates PS, Grinton BE et al. (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Applied and Environmental Microbiology 68(5):2391–2396

    Article  Google Scholar 

  • Jenkinson HF, Kay D and Mandelstam J (1980) Temporal dissociation of late events in Bacillus subtilis sporulation from expression of genes that determine them. Journal of Bacteriology 141(2):793–805

    Google Scholar 

  • Jernigan DB, Raghunathan PL, Bell BP et al. (2002) Investigation of bioterrorism-related anthrax, United States, 2001: epidemiologic findings. Emerging Infectious Diseases 8(10):1019–1028

    Google Scholar 

  • Johnston MD, Lawson S and Otter JA (2005) Evaluation of hydrogen peroxide vapour as a method for the decontamination of surfaces contaminated with Clostridium botulinum spores. Journal of Microbiological Methods 60(3):403–411

    Article  Google Scholar 

  • Jones G and Vullev VI (2002a) Medium effects on the photophysical properties of terbium(III) complexes with pyridine-2,6-dicarboxylate. Photochemical & Photobiological Sciences 1(12):925–933

    Article  Google Scholar 

  • Jones G and Vullev VI (2002b) Medium effects on the stability of terbium(III) complexes with pyridine-2,6-dicarboxylate. Journal of Physical Chemistry A 106(35):8213–8222

    Article  Google Scholar 

  • Kaeberlein T, Lewis K and Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296(5570):1127–1129

    Article  Google Scholar 

  • Kanemitsu K, Imasaka T, Ishikawa S et al. (2005) A comparative study of ethylene oxide gas, hydrogen peroxide gas plasma, and low-temperature steam formaldehyde sterilization. Infection Control and Hospital Epidemiology 26(5):486–489

    Article  Google Scholar 

  • Karl DDM (1980) Cellular nucleotide measurements and applications in microbial ecology. Microbiological Reviews 44(4):739–96

    Google Scholar 

  • Kaufmann AF, Meltzer MI and Schmid GP (1997) The economic impact of a bioterrorist attack: Are prevention and postattack intervention programs justifiable? Emerging Infectious Diseases 3(2):83–94

    Google Scholar 

  • Keeton WT (1980) Biological Science. W. W. Norton & Co.: New York

    Google Scholar 

  • Kennedy MJ, Reader SL and Swierczynski LM (1994) Preservation records of microorganisms - evidence of the tenacity of life. Microbiology-UK 140:2513–2529

    Google Scholar 

  • Keynan A and Sandler N (1983) Spore research in historical perspective. In Hurst A and Gould GW (eds) The Bacterial Spore, Volume 2. Academic Press, Inc.: New York, pp 8

    Google Scholar 

  • Kim K, Seo J, Wheeler K et al. (2005) Rapid genotypic detection of Bacillus anthracis and the Bacillus cereus group by multiplex real-time PCR melting curve analysis. FEMS Immunology and Medical Microbiology 43(2):301–310

    Article  Google Scholar 

  • King D, Luna V, Cannons A et al. (2003) Performance assessment of three commercial assays for direct detection of Bacillus anthracis spores. Journal of Clinical Microbiology 41(7):3454–3455

    Article  Google Scholar 

  • Klee SR, Nattermann H, Becker S et al. (2006) Evaluation of different methods to discriminate Bacillus anthracis from other bacteria of the Bacillus cereus group. Journal of Applied Microbiology 100(4):673–681

    Article  Google Scholar 

  • Knight J (2002) US postal service puts anthrax detectors to the test. Nature 417(6889):579–579

    Article  Google Scholar 

  • Ko KS, Kim JM, Kim JW et al. (2003) Identification of Bacillus anthracis by rpoB sequence analysis and multiplex PCR. Journal of Clinical Microbiology 41(7):2908–2914

    Article  Google Scholar 

  • Koch R (1876) Untersuchungen uber Bakterien V. Die Atiologie der Milzbrandkrankheit, begrundet auf die Entwicklungsgeschichte des Bacillus anthracis. Beitr. Biol. Pflanz. 2:277–310

    Google Scholar 

  • Koch R (1877) Untersuchungen uber Bakterien VI. Verfahren zur Untersuchung, zum Conservieren und Photographieren. Beitr. Biol. Pflanz. 2:399–434

    Google Scholar 

  • Kodaka H, Fukuda K, Mizuochi S et al. (1996) Adenosine triphosphate content of microorganisms related with food spoilage. Japanese Journal of Food Microbiology 13:29–34

    Google Scholar 

  • Koonin EV, Makarova KS and Aravind L (2001) Horizontal gene transfer in prokaryotes: Quantification and classification. Annual Review of Microbiology 55:709–742

    Article  Google Scholar 

  • Lakowicz JR (1983) Principles of Fluorescence Spectroscopy. Plenum Press: New York

    Google Scholar 

  • Lampel KA, Dyer D, Kornegay L et al. (2004) Detection of Bacillus spores using PCR and FTA filters. Journal of Food Protection 67(5):1036–1038

    Google Scholar 

  • Lan R and Reeves PR (2001) When does a clone deserve a name? A perspective on bacterial species based on population genetics. Trends in Microbiology 9(9):419–424

    Article  Google Scholar 

  • Lawrence D, Heitefuss S and Seifert HSH (1991) Differentiation of Bacillus-anthracis from Bacillus-cereus by gas-chromatographic whole-cell fatty-acid analysis. Journal of Clinical Microbiology 29(7):1508–1512

    Google Scholar 

  • Leach FR and Webster JJ (1986) Commercially available firefly luciferase reagents. Methods in Enzymology 133:51–70

    Article  Google Scholar 

  • Lester ED and Ponce A (2002) An anthrax “smoke” detector: Online monitoring of aerosolized bacterial spores. IEEE Engineering in Medicine and Biology Magazine 21(5):38–42

    Article  Google Scholar 

  • Lester ED, Bearman G and Ponce A (2004) A second-generation anthrax “smoke detector”. IEEE Engineering in Medicine and Biology Magazine 23(1):130–135

    Article  Google Scholar 

  • Leuschner RGK and Lillford PJ (1999) Effects of temperature and heat activation on germination of individual spores of Bacillus subtilis. Letters in Applied Microbiology 29:228–232

    Article  Google Scholar 

  • Levi K, Higham JL, Coates D et al. (2003) Molecular detection of anthrax spores on animal fibres. Letters in Applied Microbiology 36(6):418–422

    Google Scholar 

  • Levine SM, Tang Y-W and Pei Z (2005) Recent advances in the rapid detection of Bacillus anthracis. Reviews in Medical Microbiology 16(4):125–133

    Google Scholar 

  • Levinson HS and Hyatt MT (1966) Sequence of events during Bacillus megaterium spore germination. Journal of Bacteriology 91(5):1811–1818

    Google Scholar 

  • Lewis JC, Snell NS and Burr HK (1960) Water permeability of bacterial spores and the concept of a contratile cortex. Science 132(3426):544–545

    Article  Google Scholar 

  • Li QY, Dasgupta PK, Temkin H et al. (2004) Mid-ultraviolet light-emitting diode detects dipicolinic acid. Applied Spectroscopy 58(11):1360–1363

    Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  Google Scholar 

  • Logan NA (2004) Safety of aerobic endospore-forming bacteria. In Ricca E, Henriques AO, Cutting SM (eds) Bacterial Spore Formers - Probiotics and Emerging Applications. Horizon Bioscience: Norfolk, pp 93–106

    Google Scholar 

  • Logan NA, Carman JA, Melling J et al. (1985) Identification of Bacillus anthracis by Api Tests. Journal of Medical Microbiology 20(1):75–85

    Article  Google Scholar 

  • Logan NA and Turnbull PCB (2003) Bacillus and other aerobic endospore-forming bacteria. In Murray P et al. (ed) Manual of Clinical Microbiology. ASM Press: Washington, D.C., pp 445–460

    Google Scholar 

  • Lukasova J, Vyhnalkova J and Pacova Z (2001) Bacillus species in raw milk and in the farm environment. Milchwissenschaft-Milk Science International 56(11):609–611

    Google Scholar 

  • Mackay IM, Arden KE and Nitsche A (2002) Real-time PCR in virology. Nucleic Acids Research 30(6):1292–1305

    Article  Google Scholar 

  • Mackay IM (2004) Real-time PCR in the microbiology laboratory. Clinical Microbiology and Infection 10(3):190–212

    Article  Google Scholar 

  • Mahler H, Pasi A, Kramer JM et al. (1997) Fulminant liver failure in association with the emetic toxin of Bacillus cereus. The New England Journal of Medicine 336(16):1142–1148

    Article  Google Scholar 

  • Makino S, Iinumaokada Y, Maruyama T et al. (1993) Direct detection of Bacillus-anthracis DNA in animals by polymerase chain-reaction. Journal of Clinical Microbiology 31(3):547–551

    Google Scholar 

  • Makino S, Ito N, Inoue T et al. (1994) A spore-lytic enzyme released from Bacillus cereus spores during germination. Microbiology 140(6):1403–1410

    Google Scholar 

  • Makino S and Cheun H (2003) Application of the real-time PCR for the detection of airborne microbial pathogens in reference to the anthrax spores. Journal of Microbiological Methods 53(2):141–147

    Article  Google Scholar 

  • Makino SI, Cheun HI, Watarai M et al. (2001) Detection of anthrax spores from the air by real-time PCR. Letters in Applied Microbiology 33(3):237–240

    Article  Google Scholar 

  • Malecki J, Wiersma S, Cahill K et al. (2001) Update: Investigation of bioterrorism-related anthrax and interim guidelines for exposure management and antimicrobial therapy, October 2001. The Journal of the American Medical Association 286(18):2226–2232

    Article  Google Scholar 

  • Mamane-Gravetz H and Linden KG (2004) UV disinfection of indigenous aerobic spores: implications for UV reactor validation in unfiltered waters. Water Research 38(12):2898–2906

    Article  Google Scholar 

  • Marston CK, Gee JE, Popovic T et al. (2006) Molecular approaches to identify and differentiate Bacillus anthracis from phenotypically similar Bacillus species isolates. BMC Microbiology 6:22

    Article  Google Scholar 

  • Masters CI, Shallcross JA and Mackey BM (1994) Effect of stress treatments on the detection of Listeria monocytogenes and enterotoxigenic Escherichia coli by the polymerase chain reaction. Journal of Applied Bacteriology 77(1):73–79

    Google Scholar 

  • McBride MT, Masquelier D, Hindson BJ et al. (2003) Autonomous detection of aerosolized Bacillus anthracis and Yersinia pestis. Analytical Chemistry 75(20):5293–5299

    Article  Google Scholar 

  • McBride R (2007) Feds fund IQuum’s bioterror test technology into Phase 3. Mass High Tech: The Journal of New England Technology, http:/masshightech.bizjournals.com

    Google Scholar 

  • McElroy WD (1947) The energy source for bioluminescence in an isolated system. Proceedings of the National Academy of Sciences 33(11):342–345

    Article  Google Scholar 

  • McElroy WD and Strehler BL (1949) Factors influencing the response of the bioluminescent reaction to adenosine triphosphate. Archives of Biochemistry 22:420–433

    Google Scholar 

  • McFarland LV, Mulligan ME, Kwok RYY et al. (1989) Nosocomial acquisition of Clostridium-difficile infection. New England Journal of Medicine 320(4):204–210

    Google Scholar 

  • McFarland LV (1995) Epidemiology of infectious and iatrogenic nosocomial diarrhea in a cohort of general medicine patients. American Journal of Infection Control 23(5):295–305

    Article  Google Scholar 

  • McGenity TJ, Gemmell RT, Grant WD et al. (2000) Origins of halophilic microorganisms in ancient salt deposits. Environmental Microbiology 2(3):243–250

    Article  Google Scholar 

  • McKillip JL, Jaykus LA and Drake MM (1999) Nucleic acid persistence in heat-killed Escherichia coli O157:H7 from contaminated skim milk. Journal of Food Protection 62(8):839–844

    Google Scholar 

  • Melly E, Cowan AE, Setlow P (2002) Studies on the mechanism of killing of Bacillus subtilis spores by hydrogen peroxide. Journal of Applied Microbiology 93(2):316–325

    Google Scholar 

  • Meselson M, Guillemin J, Hugh-Jones M et al. (1994) The Sverdlovsk anthrax outbreak of 1979. Science 266(5188):1202–1208

    Article  Google Scholar 

  • Morgan CG and Mitchell AC (1996) Fluorescence lifetime imaging: An emerging technique in fluorescence microscopy. Chromosome Research 4(4):261–263

    Article  Google Scholar 

  • Murty GGK and Halvorson HO (1957) Effect of duration of heating, L-alanine and spore concentration on the oxidation of glucose by spores of Bacillus cereus var. terminalis. Journal of Bacteriology 73(2):235

    Google Scholar 

  • Nicholson W and Setlow P (1990) Sporulation, germination, and outgrowth. In Cutting S (ed) Molecular Biology Methods for Bacillus. John Wiley and Sons: Sussex, England, pp 391–450

    Google Scholar 

  • Nicholson WL, Munakata N, Horneck G et al. (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews 64(3):548–572

    Article  Google Scholar 

  • Nicholson WL and Galeano B (2003) UV resistance of Bacillus anthracis spores revisited: Validation of Bacillus subtilis spores as UV surrogates for spores of B. anthracis sterne. Applied and Environmental Microbiology 69(2):1327–1330

    Article  Google Scholar 

  • Nicholson WL (2004) Ubiquity, longevity, and ecological roles of Bacillus spores. In Ricca E, Henriques AO, Cutting SM (eds) Bacterial Spore Formers - Probiotics and Emerging Applications. Horizon Bioscience: Norfolk, pp 1–16

    Google Scholar 

  • Norris JR (1962) Bacterial spore antigens - a review. Journal of General Microbiology 28(3):393–408

    Google Scholar 

  • Northrup MA, Benett B, Hadley D et al. (1998) A miniature analytical instrument for nucleic acids based on micromachined silicon reaction chambers. Analytical Chemistry 70(5):918–922

    Article  Google Scholar 

  • Nubel U, Schmidt PM, Reiss E et al. (2004) Oligonucleotide microarray for identification of Bacillus anthracis based on intergenic transcribed spacers in ribosomal DNA. FEMS Microbiology Letters 240(2):215–223

    Article  Google Scholar 

  • Office of Space Science, NASA (1999) Planetary Protection Provisions for Robotic Extraterrestrial Missions: Washington, D.C.

    Google Scholar 

  • Office of Technology Assessment, U. C. (1993) Proliferation of Weapons of Mass Destruction. U. C. Office of Technology Assessment: Washington D.C., pp 53–55

    Google Scholar 

  • Oggioni MR, Meacci F, Carattoli A et al. (2002) Protocol for real-time PCR identification of anthrax spores from nasal swabs after broth enrichment. Journal of Clinical Microbiology 40(11):3956–3963

    Article  Google Scholar 

  • Oggioni MR, Ciabattini A, Cassone M et al. (2004) Pathogenic bacilli: Bacillus anthracis and close relatives. In Ricca E, Henriques AO, Cutting SM (eds) Bacterial Spore Formers - Probiotics and Emerging Applications. Horizon Bioscience: Norfolk, pp 45–52

    Google Scholar 

  • Okinaka R, Pearson T and Keim P (2006) Anthrax, but not Bacillus anthracis? PLOS Pathogens 2(11):1025–1027

    Article  Google Scholar 

  • Okinaka RT, Cloud K, Hampton O et al. (1999) Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. Journal of Bacteriology 181(20):6509–6515

    Google Scholar 

  • Onyenwoke RU, Brill JA, Farahi K et al. (2004) Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch (Firmicutes). Archives of Microbiology 182(2-3):182–192

    Google Scholar 

  • Pannucci J, Okinaka RT, Sabin R et al. (2002a) Bacillus anthracis pXO1 plasmid sequence conservation among closely related bacterial species. Journal of Bacteriology 184(1):134–141

    Article  Google Scholar 

  • Pannucci J, Okinaka RT, Williams E et al. (2002b) DNA sequence conservation between the Bacillus anthracis pXO2 plasmid and genomic sequence from closely related bacteria. BMC Genomics 3:34

    Article  Google Scholar 

  • Papaparaskevas J, Houhoula DP, Papadimitriou M et al. (2004) Ruling out Bacillus anthracis. Emerging Infectious Diseases 10(4):732–735

    Google Scholar 

  • Park TJ, Park JP, Seo GM et al. (2006) Rapid and accurate detection of Bacillus anthracis spores using peptide-quantum dot conjugates. Journal of Microbiology and Biotechnology 16(11):1713–1719

    Google Scholar 

  • Parsons P (1996) Dusting off panspermia. Nature 383(6597):221–222

    Article  Google Scholar 

  • Pastuszka JS, Paw UKT, Lis DO et al. (2000) Bacterial and fungal aerosol in indoor environment in Upper Silesia, Poland. Atmospheric Environment 34(22):3833–3842

    Article  Google Scholar 

  • Patra G, Sylvestre P, Ramisse V et al. (1996) Isolation of a specific chromosomic DNA sequence of Bacillus anthracis and its possible use in diagnosis. FEMS Immunology and Medical Microbiology 15(4):223–231

    Article  Google Scholar 

  • Patra G, Vaissaire J, Weber-Levy M et al. (1998) Molecular characterization of Bacillus strains involved in outbreaks of anthrax in France in 1997. Journal of Clinical Microbiology 36(11):3412–3414

    Google Scholar 

  • Patra G, Williams LE, Qi Y et al. (2002) Rapid genotyping of Bacillus anthracis strains by real-time polymerase chain reaction. In Domestic Animal/Wildlife Interface: Issue for Disease Control, Conservation, Sustainable Food Production, and Emerging Diseases. New York Academy of Sciences: New York, pp 106–111

    Google Scholar 

  • Pellegrino PM, Fell NF, Rosen DL et al. (1998) Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials. Analytical Chemistry 70(9):1755–1760

    Article  Google Scholar 

  • Pennington OJ, Van Mellaert L, Theys J et al. (2004) Recombinant clostridial spores in tumor therapy. In Ricca E, Henriques AO, Cutting SM (eds) Bacterial Spore Formers - Probiotics and Emerging Applications. Horizon Bioscience: Norfolk, pp 207–216

    Google Scholar 

  • Perry JJ and Foster JW (1955) Studies on the biosynthesis of dipicolinic acid in spores of Bacillus cereus var. mycoides. Journal of Bacteriology 69:337–346

    Article  Google Scholar 

  • Philip ES (1989) A review of bioluminescent ATP techniques in rapid microbiology. Journal of Bioluminescence and Chemiluminescence 4(1):375–380

    Article  Google Scholar 

  • Phillips AP and Martin KL (1983) Immunofluorescence analysis of Bacillus spores and vegetative cells by flow-cytometry. Cytometry 4(2):123–131

    Article  Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microbiological Reviews 58(4):755–805

    Google Scholar 

  • Poulis JJA, de Pijper MM, Mossel DDA et al. (1993) Assessment of cleaning and disinfection in the food industry with the rapid ATP-bioluminescence technique combined with the tissue fluid contamination test and a conventional microbiological method. International Journal of Food Microbiology 20(2):109–16

    Article  Google Scholar 

  • Powell E (1957) The appearance of bacterial spores under phase-contrast illumination. Journal of Applied Bacteriology 3:342–348

    MathSciNet  Google Scholar 

  • Powell JF (1953) Isolation of dipicolinic acid (pyridine-2-6-dicarboxylic acid) from spores of Bacillus megatherium. Biochemical Journal 54(2):210–211

    MathSciNet  Google Scholar 

  • Prescott SC and Dunn CG (1959) Industrial Microbiology. McGraw Hill: New York, pp 250–284

    Google Scholar 

  • Centers of Disease Control and Prevention (2002) Evaluation of postexposure antibiotic prophylaxis to prevent anthrax.(Reprinted from MMWR, vol 51, pg 59, 2002) Journal of the American Medical Association 287(6):710

    Article  Google Scholar 

  • Priha O, Hallamaa K, Saarela M et al. (2004) Detection of Bacillus cereus group bacteria from cardboard and paper with real-time PCR. Journal of Industrial Microbiology & Biotechnology 31(4):161–169

    Google Scholar 

  • Pulvertaft RJV and Haynes JA (1951) Adenosine and spore germination: phase contrast studies. Journal of General Microbiology 5:657–663

    Google Scholar 

  • Qi YA, Patra G, Liang XD et al. (2001) Utilization of the rpoB gene as a specific chromosomal marker for real-time PCR detection of Bacillus anthracis. Applied and Environmental Microbiology 67(8):3720–3727

    Google Scholar 

  • Radnedge L, Agron PG, Hill KK et al. (2003) Genome differences that distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis. Applied and Environmental Microbiology 69(5):2755–2764

    Article  Google Scholar 

  • Ramisse V, Patra G, Vaissaire J et al. (1999) The Ba813 chromosomal DNA sequence effectively traces the whole Bacillus anthracis community. Journal of Applied Microbiology 87(2):224–228

    Article  Google Scholar 

  • Rantakokko-Jalava K and Viljanen MK (2003) Application of Bacillus anthracis PCR to simulated clinical samples. Clinical Microbiology and Infection 9(10):1051–1056

    Article  Google Scholar 

  • Rappe MS, Connon SA, Vergin KL et al. (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633

    Article  Google Scholar 

  • Rasko DA, Altherr MR, Han CS et al. (2005) Genomics of the Bacillus cereus group of organisms. FEMS Microbiology Reviews 29(2):303–329

    Article  Google Scholar 

  • Read TD, Peterson SN, Tourasse N et al. (2003) The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423(6935):81–86

    Article  Google Scholar 

  • Ricca E, Henriques AO and Cutting SM (eds) (2004) Bacterial Spore Formers - Probiotics and Emerging Applications. Horizon Bioscience: Norfolk

    Google Scholar 

  • Rice EW, Fox KR, Miltner RJ et al. (1996) Evaluating plant performance with endospores. Journal American Water Works Association 88(9):122–130

    Google Scholar 

  • Rijpens NP, Nancy P, Herman LM et al. (2002) Molecular methods for identification and detection of bacterial food pathogens. Journal of AOAC International 85(4):984–995

    Google Scholar 

  • Rivera VR, Merill GA, White JA et al. (2003) An enzymatic electrochemiluminescence assay for the lethal factor of anthrax. Analytical Biochemistry 321(1):125–130

    Article  Google Scholar 

  • Rosen DL, Sharpless C and McGown LB (1997) Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence. Analytical Chemistry 69(6):1082–1085

    Article  Google Scholar 

  • Rosen DL (1998) Wavelength pair selection for bacterial endospore detection by use of terbium dipicolinate photoluminescence. Applied Optics 37(4):805–807

    Article  Google Scholar 

  • Rosen DL (1999) Bacterial endospore detection using photoluminescence from terbium dipicolinate. Reviews in Analytical Chemistry 18(1-2):1–21

    Google Scholar 

  • Ross KFA and Billing E (1957) The water and solid content of living bacterial spores and vegetative cells as indicated by refractive index measurements. Journal of General Microbiology 16:418–425

    Google Scholar 

  • Roszak DB and Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiological Reviews 51(3):365–379

    Google Scholar 

  • Rowe CA, Tender LM, Feldstein MJ et al. (1999) Array biosensor for simultaneous identification of bacterial, viral, and protein analytes. Analytical Chemistry 71(17):3846–3852

    Article  Google Scholar 

  • Rowley DB and Feeherry F (1970) Conditions affecting germination of Clostridium botulinum 62A spores in a chemically defined medium. Journal of Applied Bacteriology 104(3):1151–1157

    Google Scholar 

  • Ryu C, Lee K, Yoo C et al. (2003) Sensitive and rapid quantitative detection of anthrax spores isolated from soil samples by real-time PCR. Microbiology and Immunology 47(10):693–699

    Google Scholar 

  • Sabbatini N, Guardigli M and Lehn JM (1993) Luminescent lanthanide complexes as photochemical supramolecular devices. Coordination Chemistry Reviews 123(1-2):201–228

    Article  Google Scholar 

  • Sacks LE (1990) Chemical germination of native and cation-exchanged bacterial-spores with trifluoperazine. Applied and Environmental Microbiology 56(4):1185–1187

    Google Scholar 

  • Saiki RK, Scharf S, Faloona F et al. (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230(4732):1350–1354

    Article  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S et al. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239(4839):487–491

    Article  Google Scholar 

  • Sanderson WT, Stoddard RR, Echt AS et al. (2004) Bacillus anthracis contamination and inhalational anthrax in a mail processing and distribution center. Journal of Applied Microbiology 96(5):1048–1056

    Article  Google Scholar 

  • Santo LY and Doi RH (1974) Ultrastructural analysis during germination and outgrowth of Bacillus subtilis spores. Journal of Bacteriology 120(1):475–481

    Google Scholar 

  • Schoeni JLJL and Wong ACACL (2005) Bacillus cereus food poisoning and its toxins. Journal of Food Protection 68(3):636–48

    Google Scholar 

  • Schuch R, Nelson D and Fischetti VA (2002) A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418(6900):884–889

    Article  Google Scholar 

  • Senesi S (2004) Bacillus spores as probiotic products for human use. In Ricca E, Henriques AO, Cutting SM (eds) Bacterial Spore Formers - Probiotics and Emerging Applications. Horizon Bioscience: Norfolk, pp 131–142

    Google Scholar 

  • Setlow P and Kornberg A (1970) Biochemical studies of bacterial sporulation and germination. XXII. Energy metabolism in early stages of germination of Bacillus megaterium spores. Journal of Biological Chemistry 245(14):3637–3644

    Google Scholar 

  • Setlow P (1995) Mechanisms for the prevention of damage to DNA in spores of Bacillus species. Annual Review of Microbiology 49:29–54

    Article  Google Scholar 

  • Setlow P (2001) Resistance of spores of Bacillus species to ultraviolet light. Environmental and Molecular Mutagenesis 38(2-3):97–104

    Article  Google Scholar 

  • Setlow P (2003) Spore germination. Current Opinion in Microbiology 6(6):550–556

    Article  Google Scholar 

  • Shafaat HS and Ponce A (2006) Applications of a rapid endospore viability assay for monitoring UV inactivation and characterizing Arctic ice cores. Applied and Environmental Microbiology 72(10):6808–6814

    Article  Google Scholar 

  • Shangkuan YH, Chang YH, Yang JF et al. (2001) Molecular characterization of Bacillus anthracis using multiplex PCR, ERIC-PCR and RAPD. Letters in Applied Microbiology 32(3):139–145

    Article  Google Scholar 

  • Sheridan GE, Masters CI, Shallcross JA et al. (1998) Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cells. Applied and Environmental Microbiology 64(4):1313–1318

    Google Scholar 

  • Singh RP, Setlow B and Setlow P (1977) Levels of small molecules and enzymes in the mother cell compartment and the forespore of sporulating Bacillus megaterium. Journal of Bacteriology 130:1130–1138

    Google Scholar 

  • Sinha S (1983) Systematics and the Properties of the Lanthanides (NATO Science Series C). Springer: Dordrecht, Holland

    Google Scholar 

  • Sneath PHA (1962) Longevity of micro-organisms. Nature 195(4842):643–646

    Article  Google Scholar 

  • Song JM, Culha M, Kasili PA et al. (2005) A compact CMOS biochip immunosensor towards the detection of a single bacteria. Biosensors & Bioelectronics 20(11):2203–2209

    Article  Google Scholar 

  • Speight SE, Hallis BA, Bennett AM et al. (1997) Enzyme-linked immunosorbent assay for the detection of airborne microorganisms used in biotechnology. Journal of Aerosol Science 28(3):483–492

    Article  Google Scholar 

  • Stopa PJ, Tieman D, Coon PA et al. (1999) Detection of biological aerosols by luminescence techniques. Field Analytical Chemistry & Technology 3(4-5):283–290

    Article  Google Scholar 

  • Stopa PJ (2000) The flow cytometry of Bacillus anthracis spores revisited. Cytometry 41(4):23–244

    Google Scholar 

  • Szabo EA and Mackey BM (1999) Detection of Salmonella enteritidis by reverse transcription-polymerase chain reaction (PCR). International Journal of Food Microbiology 51(2-3):113–122

    Article  Google Scholar 

  • Tahernia AC (1967) Treatment of anthrax in children. Archives of disease in childhood 42(222):181–182

    Google Scholar 

  • Thore AA, Ansehn SS, Lundin AA et al. (1975) Detection of bacteriuria by luciferase assay of adenosine triphosphate. Journal of Clinical Microbiology 1(1):1–8

    Google Scholar 

  • Ting PT and Freiman A (2004) The story of Clostridium botulinum: from food poisoning to Botox. Clinical Medicine 4(3):258–261

    Google Scholar 

  • Turnbull PCB, Hutson RA, Ward MJ et al. (1992) Bacillus anthracis but not always anthrax. Journal of Applied Bacteriology 72(1):21–28

    Google Scholar 

  • Tyndall J (1877) Further researches on the deportment and vital persistence of putrefactive and infective organisms from a physical point of view. Philosophical Transactions of the Royal Society of London 167:149–206

    Article  Google Scholar 

  • Ugarova NN, Brovko YL and Kutuzova GD (1993) Bioluminescence and bioluminescent analysis: recent development in the field. Biokhimiya 58:1351–1372

    Google Scholar 

  • Vary JC and Halvorson HO (1965) Kinetics of germination of Bacillus spores. Journal of Bacteriology 89:1340–1347

    Google Scholar 

  • Venkateswaran KK, Hattori NN, La Duc MTMT et al. (2003) ATP as a biomarker of viable microorganisms in clean-room facilities. Journal of Microbiological Methods 52(3):367–77

    Article  Google Scholar 

  • Vereb G, Jares-Erijman E, Selvin PR, Jovin TM (1998) Temporally and spectrally resolved imaging microscopy of lanthanide chelates. Biophysical Journal 74(5):2210–2222

    Google Scholar 

  • Volokhov D, Pomerantsev A, Kivovich V et al. (2004) Identification of Bacillus anthracis by multiprobe microarray hybridization. Diagnostic Microbiology and Infectious Disease 49(3):163–171

    Article  Google Scholar 

  • Vreeland RH, Rosenzweig WD and Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407(6806):897–900

    Article  Google Scholar 

  • Walker GT, Fraiser MS, Schram JL et al. (1992a) Strand displacement amplification - an isothermal, in vitro DNA amplification technique. Nucleic Acid Research 20(7):1691–1696

    Article  Google Scholar 

  • Walker GT, Little MC, Nadeau JG et al. (1992b) Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proceedings of the National Academy of Sciences 89(1):392–396

    Article  Google Scholar 

  • Wang SH, Wen JK, Zhou YF et al. (2004) Identification and characterization of Bacillus anthracis by multiplex PCR on DNA chip. Biosensors & Bioelectronics 20(4):807–813

    Google Scholar 

  • Webster JJ, Walker BG, Ford SR et al. (1998) Determination of sterilization effectiveness by measuring bacterial growth in a biological indicator through firefly luciferase determination of ATP. Journal of Bioluminescence and Chemiluminescence 2(3):129–133

    Article  Google Scholar 

  • Weis CP, Intrepido AJ, Miller AK, Cowin PG, Durno MA, Gebhardt JS, Bull R (2002) Secondary aerosolization of viable Bacillus anthracis spores in a contaminated US Senate Office. Journal of American Medical Association 288(22):2853–2858

    Google Scholar 

  • Weyant R, Ezzell J and Popovic T (2001) Basic laboratory protocols for the presumptive identification of Bacillus anthracis. Centers for Disease Control and Prevention: Atlanta.

    Google Scholar 

  • Wilcox MH and Fawley WN (2000) Hospital disinfectants and spore formation by Clostridium difficile The Lancet 356(9238):1324–1324

    Article  Google Scholar 

  • Wilson WJ, Erler AM, Nasarabadi SL et al. (2005) A multiplexed PCR-coupled liquid bead array for the simultaneous detection of four biothreat agents. Molecular and Cellular Probes 19(2):137–144

    Article  Google Scholar 

  • Woese C and Morowitz HJ (1958) Kinetics of the release of dipicolinic acid from spores of Bacillus subtilis. Journal of Bacteriology 76(1):81–83

    Google Scholar 

  • Wuytack EY, Boven S, Michiels CW (1998) Comparative study of pressure-induced germination of Bacillus subtilis spores at low and high pressures. Applied and Environmental Microbiology 64(9):3220–3224

    Google Scholar 

  • Xiao M and Selvin PR (1999) An improved instrument for measuring time-resolved lanthanide emission and resonance energy transfer. Review of Scientific Instruments 70(10):3877–3881

    Article  Google Scholar 

  • Yamada S, Ohashi E, Agata N et al. (1999) Cloning and nucleotide sequence analysis of gyrB of Bacillus cereus, B-thuringinesis, B-mycoides, and B-anthracis and their application to the detection of B-cereus in rice. Applied and Environmental Microbiology 65(4):1483–1490

    Google Scholar 

  • Yaron S and Matthews KR (2002) A reverse transcriptase-polymerase chain reaction assay for detection of viable Escherichia coli O157:H7: investigation of specific target genes. Journal of Applied Microbiology 92(4):633–640

    Article  Google Scholar 

  • Yung PT, Kempf MJ and Ponce A (2006) A rapid single spore enumeration assay. IEEE Aerospace Conference, Big Sky, Montana

    Google Scholar 

  • Yung PT, Lester ED, Bearman G et al. (2007) An automated front-end monitor for anthrax surveillance systems based on the rapid detection of airborne endospores. Biotechnology and Bioengineering 98(4):864–871

    Article  Google Scholar 

  • Yung PT, Shafaat HS, Connon SA et al. (2007) Quantification of viable endospores from a Greenland ice core. FEMS Microbiology Ecology 59(2):300–306

    Article  Google Scholar 

  • Zahavy E, Fisher M, Bromberg A et al. (2003) Detection of frequency resonance energy transfer pair on double-labeled microsphere and Bacillus anthracis spores by flow cytometry. Applied and Environmental Microbiology 69(4):2330–2339

    Article  Google Scholar 

  • Zhang R and Zhang CT (2003) Identification of genomic islands in the genome of Bacillus cereus by comparative analysis with Bacillus anthracis. Physiological Genomics 16(1):19–23

    Article  Google Scholar 

  • Zink DL (1997) The impact of consumer demands and trends on food processing. Emerging Infectious Diseases 3(4):467–469

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ponce, A., Connon, S.A., Yung, P.T. (2008). Detection and Viability Assessment of Endospore-Forming Pathogens. In: Zourob, M., Elwary, S., Turner, A. (eds) Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75113-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75113-9_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-75112-2

  • Online ISBN: 978-0-387-75113-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics