Skip to main content

Analytical methods used to measure food emulsifiers are derived from lipid analysis (Firestone, 2001; Otles, 2004; Wood et al., 2004; Byrdwell, 2005a). Test Methods are of several types and are carried out for several reasons. Food additives are regulated by government agencies to ensure health and safety. Specifications may be set for starting materials, products, processing methods, and maximum use levels in foods. Tests may also be necessary to ensure the absence of degradation products, microorganisms and foreign materials. Composition of emulsifiers may be related to their functional performance in finished foods. Nongovernmental specifications for food emulsifiers may be negotiated between the supplier and the customer, usually a processed food producer. Tests nay be carried out in the manufacturer’s processing line or control laboratory, after which the manufacturer may issue a certificate of analysis. The customer may check the analyses as part of the receiving process, and accept or reject the shipment. Disputes may be submitted to an independent testing laboratory for resolution. Standardized test methods have been developed by professional societies, such as, the Association of Official Analytical Chemists (AOAC) (Horvitz, 2005), the American Oil Chemists Society (AOCS) (Firestone, 2005a), the International Union of Pure and Applied Chemistry (IUPAC) (Paquot and Hauffen, 1987), Leatherhead Foods Research Association, and the National Academy of Sciences (Food Chemicals Codex) (Codex, 2004).

To determine emulsifiers in intact food products, fats and emulsifiers must first be extracted. Fats and oils are soluble in nonpolar solvents, such as hexane and toluene. However, emulsifiers are amphiphilic and therefore, less soluble, particularly when emulsifier concentration is high compared to total lipid. Chloroform and chloroform/ methanol have been effective for extraction of emulsifiers (Flor and Prager, 1980). Because these solvents are classified as hazardous waste, provisions should be made for recycling. In cases where the lipid concentration is high relative to emulsifier concentration, extraction with hot hexane, followed by acetonitrile was reported (Halverson and Qvist, 1974). Solid samples (e.g., cakes or powdered coffee whiteners) may be conveniently extracted in a Soxhlet extraction apparatus. Liquid samples (e.g., milk or ice cream mix) are generally extracted in a separatory funnel or countercurrent distribution apparatus. Another factor complicating extraction is that emulsifiers may be tightly complexed with starches or proteins, or may be encapsulated in a biopolymer matrix. Pretreatment with amylase enzyme may overcome this problem (Jodlbauer, 1976).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Biacs, O. et al. (1978). Acta Aloment Acad. Sci. Hung. 7(3): 181–93.

    CAS  Google Scholar 

  • Blanco, M. et al. (2004). Anal. Chim. Acta 521(13): 143–8.

    Article  CAS  Google Scholar 

  • Bosco, M. et al. (1997). Anal. Biochem. 245(1): 38–47.

    Article  CAS  Google Scholar 

  • Bruemmer, J. M. (1971). Brot Gebaeck 25(11): 217–20.

    CAS  Google Scholar 

  • Brueschweiler, H. (1977). Mitt. Geb. Lebensmittelunters. Hyg. 68(1): 46–63.

    CAS  Google Scholar 

  • Brueschweiler, H. and Dieffenbacher, A. (1991). Pure Appl. Chem. 63(8): 1153–62.

    Article  CAS  Google Scholar 

  • Bruns, A. (1988). Fett Wiss. Technol. 90(8): 289–91.

    Article  CAS  Google Scholar 

  • Byrdwell, W. C. (2005a). Modern Methods for Lipid Analysis by Liquid Chromatography/Mass Spectrometry and Related Techniques. Champaign, American Oil Chemists’ Society.

    Book  Google Scholar 

  • Byrdwell, W. C. (2005b). Atmospheric Pressure Ionization Techniquws in Modern Lipid Analysis. Modern Methods for Lipid Analysis. W. C. Byrdwell. Champaign, IL, American Oil Chemists Society: 1–18.

    Chapter  Google Scholar 

  • Byrdwell, W. C. (2005c). Dual Parallel Liquid Chromatography/Mass Spectrometry for Lipid Analysis. Modern Methods for Lipid Analysis. W. C. Byrdwell. Champaign, IL, American Oil Chemists Society: 510–76.

    Chapter  Google Scholar 

  • Cai, S.-S. and Syage, I. (2006). J. Chromatogr. AII 10: 15–26.

    Article  CAS  Google Scholar 

  • Christie, W. W. (1992). Detectors for High Performance Liquid Chromatography of Lipids with Special Reference to Evaporative Light Scattering Detection. Advances in Lipid Methhodology. W. W. Christie. Ayr, Scotland, The Oily Press. One: 269–72.

    Google Scholar 

  • Christie, W. W. (1996). Separation of Phospholipid Classes by High Performance Liquid Chromatography. Advances in Lipid Methodology. W. W. Christie. Ayr, Scotland, The Oily Press. Three: 77–108.

    Google Scholar 

  • Codex, F. C. (2004). Food Chemicals Codex: Effective January 1, 2004, Washington, National Academies Press.

    Google Scholar 

  • Dang, H. V. et al. (2006). J. Pharm. Biomed. Anal. 40(5): 155–65.

    Google Scholar 

  • Daniels, D. H. (1982). J. Assoc. Off. Anal. Chem. 65(1): 162–5.

    CAS  Google Scholar 

  • Daniels, D. H. et al., (1985). J. Agric. Food Chem. 33(3): 368–72.

    Article  Google Scholar 

  • DeMeulenaer, B. et al. (2000). H. Chromatogr. 896(1–2): 239–51.

    Article  CAS  Google Scholar 

  • Dieffenbacher, A. et al. (1988). Rev. Fr. Corps Gras 35(12): 495–9.

    CAS  Google Scholar 

  • Dieffenbacher, A. et al. (1989). Rev. Fr. Corps Gras 36(2): 64.

    CAS  Google Scholar 

  • Diepenmaat-Walters, M. G. E. et al. (1997). J. Am. Soc. Brew. Chem. 55(4): 147–52.

    Google Scholar 

  • Duden, R. and Fricker, A. (1977). Fette Seifen Anstrichm. 79(12): 489–91.

    Article  CAS  Google Scholar 

  • El-Sebaiy, L. A. et al. (1980). Food Chem. 5(3): 217–28.

    Article  CAS  Google Scholar 

  • Erdahl, W. L. et al. (1973). J. Am. Oil Chem. Soc. 50(12): 513–5.

    Article  CAS  Google Scholar 

  • Everts, S. and Davis, J. H. (2000). Biophys. J. 79(2): 885–7.

    Article  CAS  Google Scholar 

  • Filip, V. and Kleunova, M. (1993). Z. Lebensm. Unters. Forsch 196(6): 532–35.

    Article  CAS  Google Scholar 

  • Firestone, D. (2001). Physical and Chemical Characteristics of Oils, Fats, and Waxes. Champaign, IL, The American Oil Chemists Society.

    Google Scholar 

  • Firestone, D., Ed. (2005a). Official Methods and Recommended Practices of the AOCS. Champaign, IL, The American Oil Chemists Society.

    Google Scholar 

  • Firestone, D., Ed. (2005b). AOCS Recommended Practice Cd-11c–93: Quantitative Separation of Monoglycerides, Diglycerides, and Triglycerides by Silica Gel Column Chromatography.

    Google Scholar 

  • Firestone, D., Ed. (2005c). AOCS Recommended Practice Ja 7–86: Phospholipids in Lecithin Concentrates by Thin Layer Chromatography.

    Google Scholar 

  • Firestone, D., Ed. (2005d). AOCS Official Method Cd 11–57: alpha-Monoglycerides.

    Google Scholar 

  • Firestone, D., Ed. (2005e). AOCS Official Method Ca 14–56: Total Free and Combined Glycerol: -Iodimetric -Periodic Acid Method.

    Google Scholar 

  • Firestone, D., Ed. (2005f). AOCS Official Method Cd 3d–63: Acid Value.

    Google Scholar 

  • Firestone, D., Ed. (2005g). AOCS Official Method Ca 5a–40: Free Fatty Acids.

    Google Scholar 

  • Firestone, D., Ed. (2005h). AOCS Official Method Tg 1–64: Iodine Value-Wijs method & AOCS Recommended Practice Ja 14–91: Iodine Value—Wijs Method (for lecithin).

    Google Scholar 

  • Firestone, D., Ed. (2005i). AOCS Recommended Practice Cd 1b–87: Iodine Value of Fats and Oils—Cyclohexane Method.

    Google Scholar 

  • Firestone, D., Ed. (2005j). AOCS Official Method Cd 8–53: Peroxide Value - Acetic Acid-Chloroform Method & AOCS Official Method Ja 8–87: Peroxide Value (for lecithin).

    Google Scholar 

  • Firestone, D., Ed. (2005k). AOCS Official Method Cd 8b–90: Peroxide Value—Acetic Acid-Isooctane Method.

    Google Scholar 

  • Firestone, D., Ed. (2005l). AOCS Recommended Practice Cd 3c–91: Saponification Value —Modified Method Using Methanol & AOCS Official Method Tl 1a–64: Saponification Value.

    Google Scholar 

  • Firestone, D., Ed. (2005m). AOCS Official Method Cd 13–60: Hydroxyl Value.

    Google Scholar 

  • Firestone, D., Ed. (2005n). AOCS Official Method Cd 5–40: Reichert-Meisel, Polanske, amd Kirschner Values—Modified AOAC Methods.

    Google Scholar 

  • Firestone, D., Ed. (2005o). AOCS Official Method Ca 2e–84: Moisture—Karl Fischer Reagent.

    Google Scholar 

  • Firestone, D., Ed. (2005p). AOCS Official Method Tb 2–64: Moisture - Modified Karl Fischer Reagent.

    Google Scholar 

  • Firestone, D., Ed. (2005q). AOCS Official Method Ja 2b–87: Moisture - Karl Fischer Reagent.

    Google Scholar 

  • Firestone, D., Ed. (2005r). AOCS Recommended Practice Cc 17–95: Soap in Oil.

    Google Scholar 

  • Firestone, D., Ed. (2005s). AOCS Official Method Ca 12–55: Phosphorous, and AOCS Official Method Ca 12a–02L Colorimetric Determination of Phosphorous Content in Fats and Oils.

    Google Scholar 

  • Firestone, D., Ed. (2005t). AOCS Official Method Cc 13a–92: Color—Lovibond Method Using Color Glasses Calibrated in Accordance with the Lovibond Tintometer Color Scale.

    Google Scholar 

  • Firestone, D., Ed. (2005u). AOCS Official Method Cc 13b–45: Color—Wesson Method Using Colored Glasses Calibrated in Accordance with the AOCS Tintometer Scale.

    Google Scholar 

  • Firestone, D., Ed. (2005v). AOCS Official Method Ja 9–87: Gardner Color and AOCS Official Method Jd 1a–64 Color—Gardner 1963 (Gardner Standards).

    Google Scholar 

  • Firestone, D., Ed. (2005w). AOCS Official Method Cc 13a–43: Color—FAC Standard Color.

    Google Scholar 

  • Firestone, D., Ed. (2005x). AOCS Official Method Td 2a–64: Color—Photometric Index and AOCS Official Method Cc 13c–50: Color—Spectrophotometric Method.

    Google Scholar 

  • Firestone, D., Ed. (2005y). AOCS Official Method Cc 7–25: Refractive Index and AOCS Official Method Tp 1a–64: Refractive Index.

    Google Scholar 

  • Firestone, D., Ed. (2005z). AOCS Official Method Cc 1–25: Melting Point—Capillary Tube Method.

    Google Scholar 

  • Firestone, D., Ed. (2005aa). AOCS Official Method Cc 3–25: Slip Melting Point—AOCS Standard Open Tube Melting Point and AOCS Official Metjod Cc 3b–92:Slip Melting Point—ISO Standard.

    Google Scholar 

  • Firestone, D., Ed. (2005ab). AOCS Official Method Cc 18–80: Dropping Point.

    Google Scholar 

  • Firestone, D., Ed. (2005ac). AOCS Official Methods Ja 11–87 and Tq 1a–64: Viscosity of Transparent Liquids by Bubble Time Method.

    Google Scholar 

  • Firestone, D., Ed. (2005ad). AOCS Recommended Practice Ja 10–87: Brookfield Viscosity.

    Google Scholar 

  • Firestone, D., Ed. (2005ae), AOCS Official Method Cc 10a–25: Specific Gravity of Liquid Oils and Fats.

    Google Scholar 

  • Firestone, D., Ed. (2005af). AOCS Official Method Cc 10b–25: Specific Gravity of Solid Fats and Waxes.

    Google Scholar 

  • Firestone, D., Ed. (2005ag). AOCS Official Method Ce 1–62: Fatty Acid Composition by Gas Cjromatography.

    Google Scholar 

  • Firestone, D., Ed. (2005ah). AOCS Official Method Cd 11b–91: Determination of Mono- and Diglycerides by Capillary Gas Chromatography.

    Google Scholar 

  • Firestone, D., Ed. (2005ai). AOCS Recommended Practice Cd 25–96: Heat Transfer Fluids in Oils—DowthermTM by GC.

    Google Scholar 

  • Firestone, D., Ed. (2005aj). AOCS Official Method Cd 11d–96: Mono and Diglycerides Determination by HPLC-ELSD and AOCS Official Method Ja 7b–91: Determination of Lecithin Phospholipids by HPLC.

    Google Scholar 

  • Firestone, D., Ed. (2005ak). AOCS Official Method Ca 14b–96: Quantification of Free Glycerine in Selected Glycerides and Fatty Acid Methyl Esters by HPLC and Laser Light-Scattering Detection.

    Google Scholar 

  • Firestone, D., Ed. (2005al). AOCS Recommended Practice Cd 25a–00: Thermal Heating Fluids in Edible Oils and Oleochemicals—Dowtherm A by HPLC Coupled with Fluorescence Detector.

    Google Scholar 

  • Firestone, D., Ed. (2005am). AOCS Official Method Ca 12a–02: Colorimetroc Determination of Phosphprous Content in Fats and Oils.

    Google Scholar 

  • Firestone, D., Ed. (2005an). AOCS Recommended Practice Cd 1e–01: Determination of Iodine Value by Pre-calibrated FT-NIR with Disposable Vials.

    Google Scholar 

  • Firestone, D., Ed. (2005ao). AOCS Official Method Ca 18c–91: Determination of Lead by Direct Graphite Furnace Atomic Absorption Spectrophotometry.

    Google Scholar 

  • Firestone, D., Ed. (2005ap). AOCS Official Method Ca 15–75: Analysis for Chromoim, Copper, Iron, and Nickel in Vegetable Oils by Atomic Absorption Spectrophotometry.

    Google Scholar 

  • Firestone, D., Ed. (2005aq). AOCS Recommended Practice Ca 15b–87: Sodium and Calcium by Atomic Absorption Spectrophotomrytu amf AOCS Recommended Practice Ca 17–01: Determination of Trace Elements (Calcium, Copper, Iron, Magnesium, Nickel, Silicon, Sodium, Lead, and Cadmium) in Oil by Inductuvely Coupled Plasma Optical Emmision Spectroscopy.

    Google Scholar 

  • Firestone, D., Ed. (2005ar). AOCS Official Method Cd 16b–93: Solid Fat Content (SFC) by Low-Resolution Nuclear Magnetic Resonance - The Direct Method and AOCS Official Method Cd 16–81: Solid Fat Content (SFC) by Low-Resolution Nuclear Magnetic Resonance - The Indirect Method.

    Google Scholar 

  • Flor, E. V. and Prager, M. J. (1980). J. Assoc. Off. Anal. Chem. 63(1): 22–6.

    CAS  Google Scholar 

  • Franzke, C. (1977). Z. Lebensm. Unters. Forsch. 163(3): 206–7.

    Article  CAS  Google Scholar 

  • Franzke, C. and Kroll, J. (1980). Nahrung 24(1): 89–90.

    Article  CAS  Google Scholar 

  • Frison-Norrie, S. S., P. (2001). J. Agric. Food Chem. 49(7): 3335–40.

    Article  CAS  Google Scholar 

  • Gaonkar, A. and NcPherson, A., Ed. (2005). Ingredient Interactions: Effects on Food Quality. Food Science and Technology. Boca Raton, CRC Press.

    Google Scholar 

  • Garti, N. (1981). J. Liq. Chromatogr. 4(7): 1173–94.

    Article  CAS  Google Scholar 

  • Garti, N. and Ascerin, A. (1983). J. Am. Oil Chem. Soc. 60(6): 1151–4.

    Article  CAS  Google Scholar 

  • Gillet, B. et al. (1998). Analysis 26(3): M26–M33.

    Article  CAS  Google Scholar 

  • Glonek, T. and Merchant, R. E. (1996). 31P Nuclear Magnetic Resonance Profiling of Phospholipids. Advances in Lipid Methodology. W. W. Christie. Ayr, Scotland, The Oily Press. Three, 37–75.

    Google Scholar 

  • Goldstein, S. (1984). U. S. 4, 473, 651 A.

    Google Scholar 

  • Grdadolnik, J. and Hadm, D. (1993). Chem. Phys. Lipids 65(2): 121–32.

    Article  Google Scholar 

  • Gunstone, F. G. (1993). High Resolution 13C NMR Spectroscopy of Lipids. Advances in Lipid Methodology. W. W. Christie. Ayr, Scotland, The Oily Press. Two, 1–68.

    Google Scholar 

  • Halverson, H. and Qvist, O. (1974). J. Am. Oil Chem. Soc. 51(4): 162–5.

    Article  Google Scholar 

  • Ham, X. and Gross, R. W. (2005). Toward Total Cellular Lipidome Analysis by ESI Mass Spectrometry from a Crude Lipid Extract. Modern Methods for Lipid Analysis. W. C. Byrdwell. Champaign, IL, American Oil Chemists Society: 488–509.

    Google Scholar 

  • Hartman, L. et al. (1980). Analyst 105(1247): 173–6.

    Article  CAS  Google Scholar 

  • Hasenhuettl, G. L. et al. (1990). J. Am. Oil Chem. Soc. 67(11): 797–9.

    Article  Google Scholar 

  • Horvitz, W. Ed. (2005). Official Methods of Analysis of AOAC International. AOAC International, Gaithersburg, MD.

    Google Scholar 

  • Hsieh, J. Y. et al. (1981). J. Chromatogr. 208(2): 398–403.

    Article  CAS  Google Scholar 

  • Hummel, D. (2000a). Handbook of Surfactant Analysis. New York, John Wiley & Sons: 232.

    Google Scholar 

  • Hummel, D. (2000b). Handbook of Surfactant Analysis. New York, John Wiley & Sons: 233.

    Google Scholar 

  • Hurst, W. J. and Martin, R. A. (1984). J. Am. Oil Chem. Soc. 61(9): 1462–3.

    Article  CAS  Google Scholar 

  • Huyghebaert, G. and Baert, L. (1992). Chromatographia 34(11–12): 557–62.

    Google Scholar 

  • Ingber, N. (1986). Determinarion of Hydroxyl Value by NIR, Personal Communication.

    Google Scholar 

  • Istratov, V. et al. (2003). Tetrahedron 59(22): 4017–24.

    Article  CAS  Google Scholar 

  • Jakubska, E. et al. (1977). Acta Aliment Pol. 3(1): 79–84.

    CAS  Google Scholar 

  • Jodlbauer, H. D. (1976). Getreide Mehl Brot 30(7): 181–7.

    CAS  Google Scholar 

  • Judlbauer, H. D. (1981). Veroeff. Arbeitsgem. Getreideforsch 183: 42–9.

    Google Scholar 

  • Kaitaranta, J. K. and Bessman, S. P. (1981) Anal. Chem 53(8): 1232–1235.

    Article  CAS  Google Scholar 

  • Kanematsu, H. et al. (1972). Eiyo Shokuryo 25(1): 46–50.

    CAS  Google Scholar 

  • Karrer, R. and Herbertg, H. (1992). J. High Res. Chromatog. 15(9): 585–9.

    Article  CAS  Google Scholar 

  • Kato, H. et al. (1989). J. Assoc. Offic. Anal. Chem. 72(1): 27–9.

    CAS  Google Scholar 

  • Kimura, S. et al. (1969). Nippon Shokuhin Kogyo Gakkai-shi 16(9): 425–9.

    CAS  Google Scholar 

  • Kostelnik, R. J. and Castellano, S. M. (1973). J. Magn. Reson. 9(2): 291–5.

    CAS  Google Scholar 

  • Kumar, T. N. et al. (1984). J. Chromatog. A 298: 360–5.

    Article  Google Scholar 

  • Larsen, A. and Hyattumff, E. (2005). Analysis of Phospholipids by Liquid Chromatography Coupled with On-line Electrospray Ionization Mass Spectrometry and Tandem Mass Spectrometry. Modern Methods for Lipid Analysis. W. C. Byrdwell. Champaign, IL, American Oil Chemists Society, 19–60.

    Google Scholar 

  • Lee, T. (1988). J. Assoc. Off. Anal. Chem. 71(4): 785–8.

    CAS  Google Scholar 

  • Lee, T. et al. (1993). J. Am. Oil Chem. Soc. 70(4): 343–7.

    Article  Google Scholar 

  • Lendrath, G. (1990). J. Chromatogr. 502(2): 385–92.

    Article  CAS  Google Scholar 

  • Lew, H. (1975). Veroff. Landwirtsch. Chem. Bundesversuchsanst. Linz 97(10): 10.

    Google Scholar 

  • Li, Y.-K. et al. (2002). Sepu 20(5): 476–478.

    CAS  Google Scholar 

  • Lindblom, G. (1996). Nuclear Magnetic Spectroscopy and Lipid Phase Behavior and Lipid Diffusion. Advances in Lipid Methodology. W. W. Christie. Ayr, Scotland, The Oily Press. Three, 132–99.

    Google Scholar 

  • Lundquist, G. and Meloan, C. (1971). Anal. Chem. 43(8): 1122–3.

    Article  CAS  Google Scholar 

  • Luquain, C. et al. (2001). Anal. Biochem. 296(1): 41–48.

    Article  CAS  Google Scholar 

  • Macka, M. et al. (1994). J. Chromatogr. 675(1–2): 267–70.

    Article  CAS  Google Scholar 

  • Martin, E. et al. (1989). Mitt. Geb. Lebensmittelunters Hyg. 79(4): 406–12.

    CAS  Google Scholar 

  • Mazur, A. W. et al. (1991). Chem. Phys. Lipids 60(2): 189–99.

    Article  CAS  Google Scholar 

  • Melton, S. L. (1992). J. Am. Oil Chem. Soc. 69(8): 784–8.

    Article  CAS  Google Scholar 

  • Moelering, H. and Bergmeyer, H. U. (1974). Methoden Enzym. Anal. 3. Neubearbeitete Erweite:Te Aufl. H. Bergmeyer. New York, Academic. 2: 1860–4.

    Google Scholar 

  • Mueller, H. (1977). Fette Seifen Anstrichm. 79(6): 259–61.

    Article  CAS  Google Scholar 

  • Murakami, C. et al. (1989). Shokuhin Eiseigaku Zasshi 30(4): 306–13.

    CAS  Google Scholar 

  • Murgia, S. et al. (2003). Lipids 38(5): 585–91.

    Article  CAS  Google Scholar 

  • Murohy, J. and Grislett, L. (1969). J. Am. Oil Chem. Soc. 46(7): 384.

    Article  Google Scholar 

  • Murphy, J. M. and Hibbert, H. R. (1969). J. Food Technol. 4(3): 227–34.

    Article  CAS  Google Scholar 

  • Murphy, J. M. and Scott, C. C. (1969). Analyst 94(1119): 481–3.

    Article  CAS  Google Scholar 

  • Nakanishi, H. and Tsuda, T. (1983). Shokuhin Eisergaku Zasshi 24(5): 474–9.

    CAS  Google Scholar 

  • Nunez, A. et al. (2005). Liquid Chromatography/Mass Sprvtrometry Analysis of Biosurfactant Glycolipids. Modern Methods for Lipid Analysis. W. C. Byrdwell. Champaign, IL, American Oil Chemists Society: 447–71.

    Google Scholar 

  • Olsson, U. et al. (1990). J. Planar. Chromatogr.–Mod. TLC 3: 55–60.

    CAS  Google Scholar 

  • Paganuzzi, V. (1987). Riv. Ital. Sostanze Grasse 61(10): 411–14.

    Google Scholar 

  • Paquot, C. and Hauffen, A. (Eds.) (1987). IUPAC Standard Methods of Analysis of Oils, Fats, and Derivatives. London, Blackwell.

    Google Scholar 

  • Pohle, W. et al. (1997). J. Mol. Struct. 408–409: 273–7.

    Article  Google Scholar 

  • Press, K. et al. (1981). J. Agric. Food Chem. 29(5): 1096–8.

    Article  CAS  Google Scholar 

  • Ranger, B. and Wenz, K. (1989). J. Planar. Chromatogr.–Mod. TLC 2(1): 24–7.

    Google Scholar 

  • Regula, E. (1975). J. Chromatogr. 115(2): 639–44.

    Article  CAS  Google Scholar 

  • Rhee, J. S. and Shin, M. G. (1982). J. Am. Oil Chem. Soc. 59(2): 98–9.

    Article  CAS  Google Scholar 

  • Rilsom, T. and Hoffmayer, L. (1978). J. Am. Oil Chem. Soc. 55(9): 649–52.

    Article  Google Scholar 

  • Sacchi, P. et al. (1990). Revista Italiano delle Sostanze Grasse 67(5): 245–52.

    CAS  Google Scholar 

  • Saito, K. et al. (1987). Shokuhin Eisaigaku Zasshi 28(5): 372–7.

    CAS  Google Scholar 

  • Schmid, M. J. and Ottender, H. (1976). Getreide Mehl Brot 30(3): 62–4.

    Google Scholar 

  • Schuetze, T. (1977). Nahrung 21(5): 405–15.

    Article  CAS  Google Scholar 

  • Schuyl, P. J. W. and van Platerink, C. J. (1994). Analysis of Sucrose Polyesters with Electrospray Mass Spectrometry. 42nd ASMS Conference on Mass Spectrometry, Chicago, IL.

    Google Scholar 

  • Senelt, S. et al. (1986). Turk Hij. Deney. Biyol. Derg. 43(1): 23–35.

    CAS  Google Scholar 

  • Sheeley, D. M. et al. (1986). Spectroscopy 1(2): 38–9.

    CAS  Google Scholar 

  • Shmidt, A. A. et al. (1976). Khimicheskava Promyshlennost 8: 598–600.

    Google Scholar 

  • Shmidt, A. A. et al. (1979) Lebensmittelindustrie 26(4): 172–173.

    CAS  Google Scholar 

  • Sotirhos, N. et al. (1986). Dev. Food Sci. 12: 601–8.

    CAS  Google Scholar 

  • Tajano, S. and Kondoh, Y. (1987). J. Am. Oil Chem. Soc. 64(7): 1001–3.

    Article  Google Scholar 

  • Takagi, T. and Itabashi, Y. (1986). Yukagaku 35(9): 747–50.

    CAS  Google Scholar 

  • Takagi, T. and Ando, Y. (1994). J. Am. Oil Chem. Soc. 71(4): 459–60.

    Article  CAS  Google Scholar 

  • Tanaka, M. et al. (1979). Yukagaku 28(2): 96–9.

    CAS  Google Scholar 

  • Tonogau, Y. et al. (1987). Shokuhin Eisaigaku Zasshi 28(6): 427–35.

    Google Scholar 

  • Trautler, H. and Nikiforov, A. (1984). Anal. Chem. Symp. Ser. 21: 299–304.

    Google Scholar 

  • Tsuda, T. et al. (1984). J. Assoc. Off. Anal. Chem. 67(6): 1149–51.

    CAS  Google Scholar 

  • Tumanaka, K. and Fujita, N. (1990). Yukagaku 19(6): 393–7.

    Google Scholar 

  • Uematsu, Y. et al. (2001). J. AOAC Int. 84(2): 498–506.

    CAS  Google Scholar 

  • Vyncke, W. and Lagrou, F. (1973). Meded. Fac. Landbouwwetensch 38(3): 235–52.

    CAS  Google Scholar 

  • Watanabe, M. et al. (1986). Yakagaku 35(12): 1018–24.

    CAS  Google Scholar 

  • Wood, E. et al. (2004). Analytical Methods for Food Additives. Boca Raton, CRC Press.

    Google Scholar 

  • Wyrziger, J. (1968). Ber. Getreidechem. Tag Detmold. 45–57.

    Google Scholar 

  • Yamanaka, S. and Kudo, K. (1991). CA 115:123048. Japan 03107765.

    Google Scholar 

  • Yusupoca, I. et al. (1976). Khim. Prom-St. 598–600, CA 88:35919.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hasenhuettl, G.L. (2008). Analysis of Food Emulsifiers. In: Hasenhuettl, G.L., Hartel, R.W. (eds) Food Emulsifiers and Their Applications. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75284-6_3

Download citation

Publish with us

Policies and ethics