Skip to main content

The Role of Hif-1 1 in Hypoxic Response in the Skeletal Muscle

  • Conference paper
Hypoxia and the Circulation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 618))

Abstract

During endurance training, exercising skeletal muscle experiences severe and repetitive oxygen stress, and the muscle’s ability to cope with and improve its function through that stress is central to its role in the body. The primary transcriptional response factor for hypoxic adaptation is hypoxia inducible factor-1α (HIF- 1α), which upregulates glycolysis and angiogenesis in response to low levels of tissue oxygenation. To examine the role of HIF-1α in endurance training, we have created mice specifically lacking skeletal muscle HIF-1α and subjected them to an endurance training protocol. We found that only wild type mice improve their oxidative capacity, as measured by the respiratory exchange ratio; surprisingly, we found that HIF-1α null mice have already upregulated this parameter without training. Furthermore, untrained HIF-1α null mice have an increased capillary to fiber ratio, and elevated oxidative enzyme activities. These changes correlate with constitutively activated AMP-activated protein kinase in the HIF-1α null muscles. Additionally, HIF-1α null muscles have decreased expression of pyruvate dehydrogenase kinase I, a HIF-1α target that inhibits oxidative metabolism. This data demonstrates that removal of HIF-1α causes an adaptive response in skeletal muscle akin to endurance training, and provides evidence for the suppression of mitochondrial biogenesis by HIF-1α in normal tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ameln H, Gustafsson T, Sundberg CJ, Okamoto K, Jansson E, Poellinger L, and Makino Y. Physiological activation of hypoxia inducible factor-1 in human skeletal muscle. Faseb J19: 1009-1011, 2005.

    CAS  PubMed  Google Scholar 

  2. Argov Z, Bank WJ, Maris J, Leigh JS, Jr., and Chance B. Muscle energy metabolism in human phosphofructokinase deficiency as recorded by 31P nuclear magnetic resonance spectroscopy. Ann Neurol22: 46-51, 1987.

    Article  CAS  PubMed  Google Scholar 

  3. Baar K, Song Z, Semenkovich CF, Jones TE, Han DH, Nolte LA, Ojuka EO, Chen M, and Holloszy JO. Skeletal muscle overexpression of nuclear respiratory factor 1 increases glucose transport capacity. Faseb J17: 1666-1673, 2003.

    Article  CAS  PubMed  Google Scholar 

  4. Berthon PM, Howlett RA, Heigenhauser GJ, and Spriet LL. Human skeletal muscle carnitine palmitoyltransferase I activity determined in isolated intact mitochondria. J Appl Physiol85: 148-153, 1998.

    CAS  PubMed  Google Scholar 

  5. Brooks GA. Mammalian fuel utilization during sustained exercise. Comp Biochem Physiol B Biochem Mol Biol120: 89-107, 1998.

    Article  CAS  PubMed  Google Scholar 

  6. Bruick RK, and McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science294: 1337-1340, 2001.

    Article  CAS  PubMed  Google Scholar 

  7. Bruning JC, Michael MD, Winnay JN, Hayashi T, Horsch D, Accili D, Goodyear LJ, and Kahn CR. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell2: 559-569, 1998.

    Article  CAS  PubMed  Google Scholar 

  8. Christ-Roberts CY, Pratipanawatr T, Pratipanawatr W, Berria R, Belfort R, Kashyap S, and Mandarino LJ. Exercise training increases glycogen synthase activity and GLUT4 expression but not insulin signaling in overweight nondiabetic and type 2 diabetic subjects. Metabolism53: 1233-1242, 2004.

    Article  CAS  PubMed  Google Scholar 

  9. Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, Maher ER, Pugh CW, Ratcliffe PJ, and Maxwell PH. Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 275: 25733-25741, 2000.

    Google Scholar 

  10. Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, Firestein GS, Gerber HP, Ferrara N, and Johnson RS. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell112: 645-657, 2003.

    Article  CAS  PubMed  Google Scholar 

  11. Dahia PL, Ross KN, Wright ME, Hayashida CY, Santagata S, Barontini M, Kung AL, Sanso G, Powers JF, Tischler AS, Hodin R, Heitritter S, Moore F, Dluhy R, Sosa JA, Ocal IT, Benn DE, Marsh DJ, Robinson BG, Schneider K, Garber J, Arum SM, Korbonits M, Grossman A, Pigny P, Toledo SP, Nose V, Li C, and Stiles CD. A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS genetics1: 72-80, 2005.

    Article  CAS  PubMed  Google Scholar 

  12. Dalakas MC, Mock V, and Hawkins MJ. Fatigue: definitions, mechanisms, and paradigms for study. Semin Oncol25: 48-53, 1998.

    CAS  PubMed  Google Scholar 

  13. DiMauro S, Bresolin N, and Hays AP. Disorders of glycogen metabolism of muscle. CRC Crit Rev Clin Neurobiol1: 83-116, 1984.

    CAS  PubMed  Google Scholar 

  14. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, and Ratcliffe PJ. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell107: 43-54, 2001.

    Article  CAS  PubMed  Google Scholar 

  15. Esbjornsson M, Jansson E, Sundberg CJ, Sylven C, Eiken O, Nygren A, and Kaijser L. Muscle fibre types and enzyme activities after training with local leg ischaemia in man. Acta Physiol Scand148: 233-241, 1993.

    Article  CAS  PubMed  Google Scholar 

  16. Fitts RH, and Holloszy JO. Lactate and contractile force in frog muscle during development of fatigue and recovery. Am J Physiol231: 430-433, 1976.

    CAS  PubMed  Google Scholar 

  17. Fluck M, and Hoppeler H. Molecular basis of skeletal muscle plasticity–from gene to form and function. Rev Physiol Biochem Pharmacol146: 159-216, 2003.

    Article  CAS  PubMed  Google Scholar 

  18. Freyssenet DG. Energy sensing and regulation of gene expression in skeletal muscle. J Appl Physiol2006.

    Google Scholar 

  19. Fueger PT, Shearer J, Krueger TM, Posey KA, Bracy DP, Heikkinen S, Laakso M, Rottman JN, and Wasserman DH. Hexokinase II protein content is a determinant of exercise endurance capacity in the mouse. The Journal of physiology566: 533-541, 2005.

    Article  CAS  PubMed  Google Scholar 

  20. Gulick T, Cresci S, Caira T, Moore DD, and Kelly DP. The peroxisome proliferatoractivated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc Natl Acad Sci U S A91: 11012-11016, 1994.

    Article  CAS  PubMed  Google Scholar 

  21. Haller RG, and Vissing J. Spontaneous ”second wind” and glucose-induced second ”second wind” in McArdle disease: oxidative mechanisms. Arch Neurol59: 1395- 1402, 2002.

    Google Scholar 

  22. Harms SJ, and Hickson RC. Skeletal muscle mitochondria and myoglobin, endurance, and intensity of training. J Appl Physiol54: 798-802, 1983.

    CAS  PubMed  Google Scholar 

  23. Hawley SA, Selbert MA, Goldstein EG, Edelman AM, Carling D, and Hardie DG. 5’-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J Biol Chem270: 27186-27191, 1995.

    Article  CAS  PubMed  Google Scholar 

  24. Holloszy JO, and Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol56: 831-838, 1984.

    CAS  PubMed  Google Scholar 

  25. Holmes BF, Sparling DP, Olson AL, Winder WW, and Dohm GL. Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase. Am J Physiol Endocrinol Metab289: E1071-1076, 2005.

    Google Scholar 

  26. Hoppeler H, and Fluck M. Normal mammalian skeletal muscle and its phenotypic plasticity. J Exp Biol205: 2143-2152, 2002.

    PubMed  Google Scholar 

  27. Hoppeler H, Howald H, Conley K, Lindstedt SL, Claassen H, Vock P, and Weibel ER. Endurance training in humans: aerobic capacity and structure of skeletal muscle. J Appl Physiol59: 320-327, 1985.

    CAS  Google Scholar 

  28. Huang LE, Gu J, Schau M, and Bunn HF. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitinproteasome pathway. Proc Natl Acad Sci U S A95: 7987-7992, 1998.

    Article  CAS  PubMed  Google Scholar 

  29. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, and Kaelin WG, Jr. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science292: 464-468, 2001.

    Article  CAS  PubMed  Google Scholar 

  30. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, and Ratcliffe PJ. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2- regulated prolyl hydroxylation. Science292: 468-472, 2001.

    Article  CAS  PubMed  Google Scholar 

  31. Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, and Gassmann M. Induction of HIF-1alpha in response to hypoxia is instantaneous. Faseb J15: 1312-1314, 2001.

    CAS  PubMed  Google Scholar 

  32. Kaijser L, Sundberg CJ, Eiken O, Nygren A, Esbjornsson M, Sylven C, and Jansson E. Muscle oxidative capacity and work performance after training under local leg ischemia. J Appl Physiol69: 785-787, 1990.

    CAS  PubMed  Google Scholar 

  33. Kaushik VK, Young ME, Dean DJ, Kurowski TG, Saha AK, and Ruderman NB. Regulation of fatty acid oxidation and glucose metabolism in rat soleus muscle: effects of AICAR. Am J Physiol Endocrinol Metab281: E335-340, 2001.

    Google Scholar 

  34. Keller C, Steensberg A, Pilegaard H, Osada T, Saltin B, Pedersen BK, and Neufer PD. Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. Faseb J15: 2748-2750, 2001.

    CAS  PubMed  Google Scholar 

  35. Kemper WF, Lindstedt SL, Hartzler LK, Hicks JW, and Conley KE. Shaking up glycolysis: Sustained, high lactate flux during aerobic rattling. Proc Natl Acad Sci U S A 98: 723-728, 2001.

    Article  CAS  PubMed  Google Scholar 

  36. Kim JW, Tchernyshyov I, Semenza GL, and Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell metabolism3: 177-185, 2006.

    Article  PubMed  Google Scholar 

  37. Kjaer M, Kiens B, Hargreaves M, and Richter EA.Influence of active muscle mass on glucose homeostasis during exercise in humans. J Appl Physiol71: 552-557, 1991.

    CAS  PubMed  Google Scholar 

  38. Kondo K, and Kaelin WG, Jr. The von Hippel-Lindau tumor suppressor gene. Exp Cell Res264: 117-125, 2001.

    Article  CAS  PubMed  Google Scholar 

  39. Liao D, Corle C, Seagroves TN, and Johnson RS. Hypoxia-inducible factor-1alpha is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res67: 563-572, 2007.

    Article  CAS  PubMed  Google Scholar 

  40. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, and Spiegelman BM. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418: 797-801, 2002.

    Google Scholar 

  41. Ludvik B, Mayer G, Stifter S, Putz D, Barnas U, and Graf H. Effects of dichloroacetate on exercise performance in healthy volunteers. Pflugers Arch423: 251-254, 1993.

    Article  CAS  PubMed  Google Scholar 

  42. Lundby C, Gassmann M, and Pilegaard H. Regular endurance training reduces the exercise induced HIF-1alpha and HIF-2alpha mRNA expression in human skeletal muscle in normoxic conditions. Eur J Appl Physiol1-7, 2005.

    Google Scholar 

  43. Lundby C, Gassmann M, and Pilegaard H. Regular endurance training reduces the exercise induced HIF-1alpha and HIF-2alpha mRNA expression in human skeletal muscle in normoxic conditions. European journal of applied physiology96: 363-369, 2006.

    Article  CAS  PubMed  Google Scholar 

  44. Madan A, and Curtin PT. A 24-base-pair sequence 3’ to the human erythropoietin gene contains a hypoxia-responsive transcriptional enhancer. Proc Natl Acad Sci U S A90: 3928-3932, 1993.

    Article  CAS  PubMed  Google Scholar 

  45. Mason SD, Howlett RA, Kim MJ, Olfert IM, Hogan MC, McNulty W, Hickey RP, Wagner PD, Kahn CR, Giordano FJ, and Johnson RS. Loss of skeletal muscle HIF- 1alpha results in altered exercise endurance. PLoS Biol2: e288, 2004.

    Google Scholar 

  46. Mu J, Barton ER, and Birnbaum MJ. Selective suppression of AMP-activated protein kinase in skeletal muscle: update on ‘lazy mice’. Biochem Soc Trans31: 236-241, 2003.

    Article  CAS  PubMed  Google Scholar 

  47. Murakami T, Shimomura Y, Yoshimura A, Sokabe M, and Fujitsuka N. Induction of nuclear respiratory factor-1 expression by an acute bout of exercise in rat muscle. Biochim Biophys Acta1381: 113-122, 1998.

    CAS  PubMed  Google Scholar 

  48. Nardone A, and Schieppati M. Shift of activity from slow to fast muscle during voluntary lengthening contractions of the triceps surae muscles in humans. The Journal of physiology395: 363-381, 1988.

    CAS  PubMed  Google Scholar 

  49. Narravula S, and Colgan SP. Hypoxia-inducible factor 1-mediated inhibition of peroxisome proliferator-activated receptor alpha expression during hypoxia. J Immunol166: 7543-7548, 2001.

    CAS  Google Scholar 

  50. Nau PN, Van Natta T, Ralphe JC, Teneyck CJ, Bedell KA, Caldarone CA, Segar JL, and Scholz TD. Metabolic adaptation of the fetal and postnatal ovine heart: regulatory role of hypoxia-inducible factors and nuclear respiratory factor-1. Pediatr Res52: 269-278, 2002.

    CAS  PubMed  Google Scholar 

  51. Olfert IM, Breen EC, Mathieu-Costello O, and Wagner PD. Chronic hypoxia attenuates resting and exercise-induced VEGF, flt-1, and flk-1 mRNA levels in skeletal muscle. J Appl Physiol90: 1532-1538, 2001.

    CAS  PubMed  Google Scholar 

  52. Papandreou I, Cairns RA, Fontana L, Lim AL, and Denko NC. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell metabolism3: 187-197, 2006.

    Article  CAS  PubMed  Google Scholar 

  53. Pilegaard H, Ordway GA, Saltin B, and Neufer PD. Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol Endocrinol Metab279: E806-814, 2000.

    Google Scholar 

  54. Pisani DF, and Dechesne CA. Skeletal muscle HIF-1alpha expression is dependent on muscle fiber type. J Gen Physiol126: 173-178, 2005.

    Article  CAS  PubMed  Google Scholar 

  55. Richardson RS, Noyszewski EA, Kendrick KF, Leigh JS, and Wagner PD. Myoglobin O2 desaturation during exercise. Evidence of limited O2 transport. J Clin Invest96: 1916-1926, 1995.

    Article  CAS  PubMed  Google Scholar 

  56. Rowell LB. Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev54: 75-159, 1974.

    CAS  PubMed  Google Scholar 

  57. Russell AP, Hesselink MK, Lo SK, and Schrauwen P. Regulation of metabolic transcriptional co-activators and transcription factors with acute exercise. Faseb J 19: 986-988, 2005.

    Google Scholar 

  58. Ryan HE, Lo J, and Johnson RS. HIF-1 alpha is required for solid tumor formation and embryonic vascularization. Embo J17: 3005-3015, 1998.

    Article  CAS  PubMed  Google Scholar 

  59. Ryan HE, Poloni M, McNulty W, Elson D, Gassmann M, Arbeit JM, and Johnson RS. Hypoxia-inducible factor-1alpha is a positive factor in solid tumor growth. Cancer Res60: 4010-4015, 2000.

    CAS  PubMed  Google Scholar 

  60. Scarpulla RC. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta1576: 1-14, 2002.

    CAS  PubMed  Google Scholar 

  61. Schantz P, Henriksson J, and Jansson E. Adaptation of human skeletal muscle to endurance training of long duration. Clin Physiol3: 141-151, 1983.

    Article  CAS  PubMed  Google Scholar 

  62. Schipani E, Ryan HE, Didrickson S, Kobayashi T, Knight M, and Johnson RS. Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes Dev15: 2865-2876, 2001.

    CAS  PubMed  Google Scholar 

  63. Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, Laderoute K, and Johnson RS. Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol21: 3436-3444, 2001.

    Article  CAS  PubMed  Google Scholar 

  64. Semenza G. Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol 64: 993-998, 2002.

    Article  CAS  PubMed  Google Scholar 

  65. Semenza GL. HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell107: 1-3, 2001.

    Article  CAS  PubMed  Google Scholar 

  66. Silva JL, Giannocco G, Furuya DT, Lima GA, Moraes PA, Nachef S, Bordin S, Britto LR, Nunes MT, and Machado UF. NF-kappaB, MEF2A, MEF2D and HIF1- a involvement on insulin- and contraction-induced regulation of GLUT4 gene expression in soleus muscle. Mol Cell Endocrinol240: 82-93, 2005.

    Article  CAS  PubMed  Google Scholar 

  67. Stroka DM, Burkhardt T, Desbaillets I, Wenger RH, Neil DA, Bauer C, Gassmann M, and Candinas D. HIF-1 is expressed in normoxic tissue and displays an organspecific regulation under systemic hypoxia. Faseb J15: 2445-2453, 2001.

    CAS  PubMed  Google Scholar 

  68. Tang K, Breen EC, Gerber HP, Ferrara NM, and Wagner PD. Capillary regression in vascular endothelial growth factor-deficient skeletal muscle. Physiol Genomics18: 63-69, 2004.

    Article  CAS  PubMed  Google Scholar 

  69. Taylor EB, Lamb JD, Hurst RW, Chesser DG, Ellingson WJ, Greenwood LJ, Porter BB, Herway ST, and Winder WW. Endurance training increases skeletal muscle LKB1 and PGC-1alpha protein abundance: effects of time and intensity. American journal of physiology289: E960-968, 2005.

    Google Scholar 

  70. Terada S, Goto M, Kato M, Kawanaka K, Shimokawa T, and Tabata I. Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun296: 350-354, 2002.

    Article  CAS  PubMed  Google Scholar 

  71. Thorell A, Hirshman MF, Nygren J, Jorfeldt L, Wojtaszewski JF, Dufresne SD, Horton ES, Ljungqvist O, and Goodyear LJ. Exercise and insulin cause GLUT-4 translocation in human skeletal muscle. Am J Physiol277: E733-741, 1999.

    Google Scholar 

  72. Vega RB, Huss JM, and Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol20: 1868-1876, 2000.

    Article  CAS  PubMed  Google Scholar 

  73. Vissing J, Galbo H, and Haller RG. Paradoxically enhanced glucose production during exercise in humans with blocked glycolysis caused by muscle phosphofructokinase deficiency. Neurology47: 766-771, 1996.

    CAS  PubMed  Google Scholar 

  74. Vogt M, Puntschart A, Geiser J, Zuleger C, Billeter R, and Hoppeler H. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol91: 173-182, 2001.

    CAS  PubMed  Google Scholar 

  75. Wang GL, Jiang BH, Rue EA, and Semenza GL. Hypoxia-inducible factor 1 is a basichelix- loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A92: 5510-5514, 1995.

    Article  CAS  PubMed  Google Scholar 

  76. Wang GL, and Semenza GL. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A90: 4304-4308, 1993.

    Article  CAS  PubMed  Google Scholar 

  77. Wang GL, and Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem270: 1230-1237, 1995.

    Article  CAS  PubMed  Google Scholar 

  78. Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, Ham J, Kang H, and Evans RM. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol2: e294, 2004.

    Google Scholar 

  79. Wiesener MS, Jurgensen JS, Rosenberger C, Scholze CK, Horstrup JH, Warnecke C, Mandriota S, Bechmann I, Frei UA, Pugh CW, Ratcliffe PJ, Bachmann S, Maxwell PH, and Eckardt KU. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. Faseb J17: 271-273, 2003.

    CAS  PubMed  Google Scholar 

  80. Winder WW. Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle. J Appl Physiol91: 1017-1028, 2001.

    CAS  PubMed  Google Scholar 

  81. Winder WW, Arogyasami J, Barton RJ, Elayan IM, and Vehrs PR. Muscle malonyl- CoA decreases during exercise. J Appl Physiol67: 2230-2233, 1989.

    CAS  PubMed  Google Scholar 

  82. Winder WW, Wilson HA, Hardie DG, Rasmussen BB, Hutber CA, Call GB, Clayton RD, Conley LM, Yoon S, and Zhou B. Phosphorylation of rat muscle acetyl-CoA carboxylase by AMP-activated protein kinase and protein kinase A. J Appl Physiol 82: 219-225, 1997.

    Article  CAS  PubMed  Google Scholar 

  83. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, and Spiegelman BM. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC- 1. Cell98: 115-124, 1999.

    Article  CAS  PubMed  Google Scholar 

  84. Yun Z, Maecker HL, Johnson RS, and Giaccia AJ. Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev Cell2: 331-341, 2002.

    Article  CAS  PubMed  Google Scholar 

  85. Zheng D, MacLean PS, Pohnert SC, Knight JB, Olson AL, Winder WW, and Dohm GL. Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase. J Appl Physiol91: 1073-1083, 2001.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Mason, S., Johnson, R.S. (2007). The Role of Hif-1 1 in Hypoxic Response in the Skeletal Muscle. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia and the Circulation. Advances in Experimental Medicine and Biology, vol 618. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75434-5_18

Download citation

Publish with us

Policies and ethics