Skip to main content

Stimuli-Sensitive Nanosystems: For Drug and Gene Delivery

  • Chapter
Multifunctional Pharmaceutical Nanocarriers

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 4))

Apart from its previous history in pharmaceutics, nanotechnology has recently become a major paradigm for the delivery of anticancer drugs, imaging agents, and genetic material. Pharmaceutical nanosystems have shown beneficial therapeutic efficacy with reduced side effects in treating diseases when compared to traditional dosage forms. For example, delivery of high doses of therapeutic and/or diagnostic agents to target cancer sites has been achieved using nano-sized carrier systems. This effect is primarily attributed to passive accumulation in solid tumors and inflamed regions by the EPR effect and the size (20–200 nm) of the carriers, followed by passive diffusional release of the drug in the extracellular space and/or active internalization into the cells via various entry mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. 2002. Molecular Biology of the Cell. 4th Edition. New York: Garland Science.

    Google Scholar 

  • Alexiou, C., Jurgons, R., Seliger, C., and Iro, H. 2006. Medical applications of magnetic nanoparticles. J. Nanosci. Nanotechnol. 6:2762–2768.

    Article  PubMed  CAS  Google Scholar 

  • Bae, Y., Fukyshima, S., Harada, A., and Kataoka, K. 2003. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew. Chem. Int. Ed. Engl. 42:4640–4643.

    Article  PubMed  CAS  Google Scholar 

  • Bae, Y., Jang, W. D., Nishiyama, N., Fukushima, S., and Kataoka, K. 2005a. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol. BioSyst. 1:242–250.

    Article  PubMed  CAS  Google Scholar 

  • Bae, Y., Nishiyama, N., Fukushima, S., Koyama, H., Yasuhiro, M., and Kataoka, K. 2005b. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug. Chem. 16:122–130.

    Article  PubMed  CAS  Google Scholar 

  • Balakirev, M., Schoehn, G., and Chroboczek, J. 2000. Lipoic acid-derived amphiphiles for redox-controlled DNA delivery. Chem. Biol. 7:813–819.

    Article  PubMed  CAS  Google Scholar 

  • Bisht, H. S., Manickam, D. S., You, Y., and Oupicky, D. 2006. Temperature-controlled properties of DNA complexes with poly(ethyleneimine)-graft-poly(N-isopropylacrylamide). Biomacromolecules 7:1169–1178.

    Article  PubMed  CAS  Google Scholar 

  • Blessing, T., Remy, J. S., and Behr, J. P. 1998. Template oligomerization of DNA-bound cations produces calibrated nanometric particles J. Am. Chem. Soc. 120:8519–8520.

    Article  CAS  Google Scholar 

  • Boesch, D., Gaveriaux, C., Jachez, B., Pourtier-Manzanedo, A., Bollinger, P., and Loor, F. 1991. In vivo circumvention of P-glycoprotein-mediated multidrug resistance of tumor cells with SDZ PSC 833. Cancer Res. 51:4226–4233.

    PubMed  CAS  Google Scholar 

  • Boussif, O., Lezoualc’h, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., and Behr, J. P. 1995. A versatile vector for gene and oligonucleotides transfer into cells in culture and in vivo: polyethyleneimine. Proc. Natl. Acad. Sci. USA. 92:7297–7301.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Brannon-Peppas, L. and Blanchette, J. O. 2004. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 56:1649–1659.

    Article  PubMed  CAS  Google Scholar 

  • Cammas, S., Suzuki, K., Sone, C., Sakuri, Y., Kataoka, K., and Okano, T. 1997. Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers. J. Control. Release 48:157–164.

    Article  CAS  Google Scholar 

  • Cataldo, A. M., Petanceska, S., Peterhoff, C. M., Terio, N. B., Epstein, C. J., Villar, A., Carlson, E. J., Staufenbiel, M., and Nixon, R. A. 2003. App gene dosage modulates endosomal abnormalities of Alzheimer’s disease in a segmental trisomy 16 mouse model of Down syndrome. J. Neurosci. 23:6788–6792.

    PubMed  CAS  Google Scholar 

  • Cho, Y. W., Kim, J. D., and Park, K. 2003. Polycation gene delivery systems: escape from endosomes to cytosol. J. Pharm. Pharmacol. 55:721–734.

    Article  PubMed  CAS  Google Scholar 

  • Chung, J. E., Yokoyama, M., Aoyagi, Y., Sakurai, Y., and Okano, T. 1998. Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. J. Control. Release 53:119–130.

    Article  PubMed  CAS  Google Scholar 

  • Chung, J. E., Yokoyama, M., Yamato, T., Aoyagi, Y., Sakurai, Y., and Okano, T. 1999. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). J. Control. Release 62:115–127.

    Article  PubMed  CAS  Google Scholar 

  • Chung, J. E., Yokoyama, M., and Okano, T. 2000. Inner core segment design for drug delivery control of thermo-responsive polymeric micelles. J. Control. Release 65:93–103.

    Article  PubMed  CAS  Google Scholar 

  • Dauty, E., Remy, J. S., Blessing, T., and Behr, J. P. 2001. Dimerizable cationic detergents with a low cmc condense plasmid DNA into nanometric particles and transfect cells in culture. J. Am. Chem. Soc. 123:9227–9234.

    Article  PubMed  CAS  Google Scholar 

  • Dewhirst, M. W. 1995. Thermal dosimetry. In Principles and Practice of Thermoradiotherapy and Thermochemotherapy, ed. M. H. Seegenschmiedt, P. Fessenden, and C. C. Vernon, pp. 123–136. Berlin: Springer.

    Google Scholar 

  • Diessemond, J., Witthoff, M., Brauns, T. C., Harberer, D., and Gros, M. 2003. pH Values on chronic wounds: evaluation during modern wound therapy. Hautarzt 54:959–965.

    Article  Google Scholar 

  • Dreher, M. R., Raucher, D., Balu, N., Colvin, O. M., Ludeman, S. M., and Chilkoti, A. 2003. Evaluation of an elastin-like polypeptide-doxorubicin conjugate for cancer therapy. J. Control. Release 91:31–43.

    Article  PubMed  CAS  Google Scholar 

  • Drummond, D. C., Zignani, M., and Leroux, J. C. 2000. Current status of pH-sensitive liposomes in drug delivery. Prog. Lipid Res. 39:409–460.

    Article  PubMed  CAS  Google Scholar 

  • Engin, K., Leeper, D. B., Cater, J. R., Thistlethwaite, A. J. Tupchong, L., and McFarlane, J. D. 1995. Extracellular pH distribution in human tumors. Int. J. Hyperthermia 11:211–216.

    Article  PubMed  CAS  Google Scholar 

  • Eum, K. M., Langley, K. H., and Tirrell, D. A. 1989. Quasi-elastic and electrophoretic light-scattering studies of the reorganization of dioleoylphosphatidylcholine vesicle membrane by poly(2-ethylacrylic acid). Macromolecules 22:2755–2760.

    Article  ADS  CAS  Google Scholar 

  • Evans, W. H. and Hardison, W. G. 1985. Phospholipid, cholesterol, polypeptide and glycoprotein composition of hepatic endosome subfractions. Biochem. J. 232:33–36.

    PubMed  CAS  Google Scholar 

  • Funhoff, A. M., van Nostrum, C. F., Koning, G. A., Schuurmans-Nieuwenbroek, N. M., Crommelin, D. J., and Hennink, W. E. 2004. Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH. Biomacromolecules 5:32–39.

    Article  PubMed  CAS  Google Scholar 

  • Furgeson, D. Y., Dreher, M. R., and Chilkoti, A. 2006. Structural optimization of a “smart” doxorubicin-polypeptide conjugate for thermally targeted delivery to solid tumors. J. Control. Release 110:362–369.

    Article  PubMed  CAS  Google Scholar 

  • Gardner, S. N. 2000. A mechanistic, predictive model of dose-response curves for cell cycle phase-specific and -nonspecific drugs. Cancer Res. 60:1417–1425.

    PubMed  CAS  Google Scholar 

  • Gaucher, G., Dufresne, M. H., Sant, V. P., Kang, N., Maysinger, D., and Leroux, J. C. 2005. Block copolymer micelles: preparation, characterization and application in drug delivery. J. Control. Release 109:169–188.

    Article  PubMed  CAS  Google Scholar 

  • Gerasimov, O. V., Boomer, J. A., Qualls, M. M., and Thompson, D. H. 1999. Cytosolic drug delivery using pH- and light-sensitive liposomes. Adv. Drug Deliv. Rev. 38:317–338.

    Article  PubMed  CAS  Google Scholar 

  • Gerlowski, L. E. and Jain, R. K. 1985. Effect of hyperthermia on microvascular permeability to macromolecules in normal and tumor tissues. Int. J. Microcirc. Clin. Exp. 4:363–372.

    PubMed  CAS  Google Scholar 

  • Gillies, E. R. and Fréchet, J. M. 2005. pH-Responsive copolymer assemblies for controlled release of doxorubicin. Bioconjug. Chem. 16:361–368.

    Article  PubMed  CAS  Google Scholar 

  • Gillies, E. R., Goodwin, A. P., and Fréchet, M. J. 2004a. Acetals as pH-sensitve linkages for drug delivery. Bioconjug. Chem. 15:1254–1263.

    Article  PubMed  CAS  Google Scholar 

  • Gillies, E. R., Jonsson, T. B., and Fréchet, M. J. 2004b. Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J. Am. Chem. Soc. 126:11936–11943.

    Article  PubMed  CAS  Google Scholar 

  • Gottesman, M. M., Pastan, I., and Ambudkar, S. V. 1996. P-glycoprotein and multi drug resistance. Curr. Opin. Genet. Dev. 6:610–617.

    Article  PubMed  CAS  Google Scholar 

  • Hager, A., Debus, G., Edel, H. G., Stransky, H., and Serrano, R. 1991. Auxin induces exocytosis and the rapid synthesis of a high-turnover pool of plasma-membrane H+ ATPase. Planta 185:527–537.

    Article  CAS  Google Scholar 

  • Hansen, J. M., Go, Y. M., and Jones, D. P. 2006. Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu. Rev. Pharmacol. Toxicol. 46:215–234.

    Article  PubMed  CAS  Google Scholar 

  • Heskins, M. and Guillet, J. E. 1968. Solution properties of poly(N-isopropylacrylamide). J. Macromol. Sci. Chem. A. 2:1441–1455.

    Article  CAS  Google Scholar 

  • Hobbs, S. K., Monsky, W. L., Yuan, F., Roberts, W. G., Griffith, L., Torchilin, V. P., and Jain, R. K., 1998. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA. 95:4607–4612.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Hooijberg, J. H., Peters, G. J., Assaraf, Y. G., Kathmann, I., Priest, D. G., Bunni, M. A., Veerman, A. J., Scheffer, G. L., Kaspers, G. J., and Jansen, G. 2003.The role of multidrug resistance proteins MRP1, MRP2 and MRP3 in cellular folate homeostasis. Biochem. Pharmacol. 65:765–771.

    Article  PubMed  CAS  Google Scholar 

  • Hruby, M., Konak, C., and Ulbrich, K. 2005. Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J. Control. Release 103:137–148.

    Article  PubMed  CAS  Google Scholar 

  • Jain, R. K. 1987. Transport of molecules across tumor vasculature. Cancer Metastasis Rev. 6:559–593.

    Article  PubMed  CAS  Google Scholar 

  • Jeong, B., Bae, Y. H., and Kim, S. W. 1999. Biodegradable thermosensitive micelles of PEG–PLGA–PEG triblock copolymers. Colloids Surf. B. Biointerfaces 16:185–193.

    Article  CAS  Google Scholar 

  • Jones, R. A., Cheung, C. Y., Black, F. E., Zia, J. K., Stayton, P. S., Hoffman, A. S., and Wilson., M. R. 2003. Poly(2-alkylacrylic acid) polymers deliver molecules to the cytosol by pH-sensitive disruption of endosomal vesicles. Biochem. J. 372:65–75.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko, T., Willner, D., Monkovic, I., Knipe, J. O., Braslawsky, G. R., Greenfield, R. S., and Vyas, D. M. 1991. New hydrazone derivatives of adriamycin and their immunoconjugates: a correlation between acid stability and cytotoxicity. Bioconjug. Chem. 2:133–141.

    Article  PubMed  CAS  Google Scholar 

  • Kang, H. C. and Bae, Y. H. 2007. pH-Tunable endosomolytic oligomers for enhanced nucleic acid delivery. Adv. Funct. Mater. 17:1263–1272.

    Article  CAS  Google Scholar 

  • Kang, H. C., Lee, M., and Bae, Y. H. 2005. Polymeric gene carriers. Crit. Rev. Eukaryot. Gene Expr. 15:317–342.

    PubMed  CAS  Google Scholar 

  • Kang, H. C., Lee, M., and Bae, Y. H. 2007. Polymeric gene delivery vectors. In Nanotechnology in Therapeutics: Current Technology and Application, ed. N. A. Peppas, J. Z. Hilt, and J. B. Thomas, pp. 131–161. Wymondham: Horizon Bioscience.

    Google Scholar 

  • Kiang, T., Bright, C., Cheung, C. Y., Stayton, P. S., Hoffman, A. S., and Leong, K. W. 2004. Formulation of chitosan-DNA nanoparticles with poly(propyl acrylic acid) enhances gene expression. J. Biomater. Sci. Polym. Ed. 15:1405–1421.

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi, A. and Okano, T. 2002. Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds. Prog. Polym. Sci. 27:1165–1193.

    Article  CAS  Google Scholar 

  • Kim, G. M., Bae, Y. H., and Jo, W. H. 2005a. pH-Induced micelle formation of poly(histidine-cophenylalanine)-block-poly(ethylene glycol) in aqueous media. Macromol. Biosci. 5:1118–1124.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y. H., Park, J. H., Lee, M., Kim, Y. H., Park, T. G., and Kim, S. W. 2005b. Polyethylenimine with acid-labile linkages as a biodegradable gene carrier. J. Control. Release 103:209–219.

    Article  PubMed  CAS  Google Scholar 

  • Kong, G. H. and Dewhirst, M. W. 1999. Hyperthermia and liposomes. Int. J. Hyperthermia 15:345–370.

    Article  PubMed  CAS  Google Scholar 

  • Kunath, K., von Harpe, A., Fischer, D., Petersen, H., Bickel, U., Voigt, K., and Kissel, T. 2003. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J. Control. Release 89:113–125.

    Article  PubMed  CAS  Google Scholar 

  • Kurisawa, M., Yokoyama, M., and Okano, T. 2000. Gene expression control by temperature with thermo-responsive polymeric gene carriers. J. Control. Release 69:127–137.

    Article  PubMed  CAS  Google Scholar 

  • Lavigne, M. D., Pennadam, S. S., Ellis, J., Yates, L. L., Alexander, C., and Górecki, D. C. 2007. Enhanced gene expression through temperature profile-induced variations in molecular architecture of thermoresponsive polymer vectors. J. Gene Med. 9:44–54.

    Article  PubMed  CAS  Google Scholar 

  • Lazzarino, D. A., Blier, P., and Mellman, I. 1998. The monomeric guanosine triphosphatase rab4 controls an essential step on the pathway of receptor-mediated antigen processing in B cells. J. Exp. Med. 188:1769–1774.

    Article  PubMed  CAS  Google Scholar 

  • Lee, E. S., Shin, H. J., Na, K., and Bae, Y. H. 2003a. Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization. J. Control. Release 90:363–374.

    Article  PubMed  CAS  Google Scholar 

  • Lee, E. S., Na, K., and Bae, Y. H. 2003b. Polymeric micelle for tumor pH and folate-mediated targeting. J. Control. Release 91:103–113.

    Article  PubMed  CAS  Google Scholar 

  • Lee, E. S., Na, K., and Bae, Y. H. 2005a. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J. Control. Release 103:405–418.

    Article  PubMed  CAS  Google Scholar 

  • Lee, E. S., Na, K., and Bae, Y. H. 2005b. Super pH-sensitive multifunctional polymeric micelle. Nano Lett. 5:325–329.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Leeper, D. B., Engin, K., Thistlethwaite, A. J., Hitchon, H. D., Dover, J. D., Li, D. J., and Tupchong, L. 1994. Human tumor extracellular pH as a function of blood glucose concentration. Int. J. Radiat. Oncol. Biol. Phys. 28:935–943.

    PubMed  CAS  Google Scholar 

  • Leroux, J., Roux, E., Le Garrec, D., Hong, K., and Drummond, D. C. 2001. N-isopropylacrylamide copolymers for the preparation of pH-sensitive liposomes and polymeric micelles. J. Control. Release 72:71–84.

    Article  PubMed  CAS  Google Scholar 

  • Licciardi, M., Giammona, G., Du, J., Armes, S. P., Tang, Y., and Lewis, A. L. 2006. New folate-functionalized biocompatible block copolymer micelles as potential anti-cancer drug delivery systems. Polymer 47:2946–2955.

    Article  CAS  Google Scholar 

  • Liu, S. Q., Tong, Y. W., and Yang, Y. Y. 2005. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N, N-dimethylacrylamide)-b-poly(D, L-lactide-co-glycolide) with varying compositions. Biomaterials 26:5064–5074.

    Article  PubMed  CAS  Google Scholar 

  • Liu, S. Q., Wiradharma, N., Gao, S. J., Tong, Y. W., and Yang, Y. Y. 2007. Bio-functional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs. Biomaterials 28:1423–1433.

    Article  PubMed  CAS  Google Scholar 

  • Makhaeva, E. E., Tenhu, H., and Khokhlov, A. R. 1998. Conformational changes of poly(vinylcaprolactam) macromolecules and their complexes with ionic surfactants in aqueous solution. Macromolecules 31:6112–6118.

    Article  ADS  CAS  Google Scholar 

  • Manickam, D. S. and Oupicky, D. 2006. Multiblock reducible copolypeptides containing histidine-rich and nuclear localization sequences for gene delivery. Bioconjug. Chem. 17:1395–1403.

    Article  PubMed  CAS  Google Scholar 

  • Manickam, D. S., Bisht, H. S., Wan, L., Mao, G., and Oupicky, D. 2005. Influence of TAT-peptide polymerization on properties and transfection activity of TAT/DNA polyplexes. J. Control. Release 102:293–306.

    Article  CAS  Google Scholar 

  • Matsumura, Y. and Maeda, H. 1986. A new concept for macromolecular therapeutics in cancer-chemotherapy—mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res. 46:6387–6392.

    PubMed  CAS  Google Scholar 

  • Meyer, D. E., Shin, B. C., Kong, G. A., Dewhirst, M. W., and Chilkoti, A. 2001. Drug targeting using thermally responsive polymers and local hyperthermia. J. Control. Release 74:213–224.

    Article  PubMed  CAS  Google Scholar 

  • Midoux, P. and Monsigny, M. 1999. Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjug. Chem. 10:406–411.

    Article  PubMed  CAS  Google Scholar 

  • Miyata, K., Kakizawa, Y., Nishiyama, N., Harada, A., Yamasaki, Y., Koyama, H., and Kataoka, K. 2004. Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression. J. Am. Chem. Soc. 126:2355–2361.

    Article  PubMed  CAS  Google Scholar 

  • Mohajer, G., Lee, E. S., and Bae, Y. H. 2007. Enhanced intercellular retention activity of novel pH-sensitive polymeric micelles in wild and multidrug resistant MCF-7 Cells. Pharm. Res. 24:1618–1627.

    Article  PubMed  CAS  Google Scholar 

  • Murthy, N., Campbell, J., Fausto, N., Hoffman, A. S., and Stayton, P. S. 2003. Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs. Bioconjug. Chem. 14:412–419.

    Article  PubMed  CAS  Google Scholar 

  • Murata, M., Kaku, W., Anada, T., Sato, Y., Kano, T., Maeda, M., and Katayama, Y. 2003a. Novel DNA/polymer conjugate for intelligent antisense reagent with improved nuclease resistance. Bioorg. Med. Chem. Lett. 13:3967–3970.

    Article  PubMed  CAS  Google Scholar 

  • Murata, M., Kaku, W., Anada, T., Sato, Y., Maeda, M., and Katayama, Y. 2003b. Temperature-dependent regulation of antisense activity using a DNA/poly(N-isopropylacrylamide) conjugate. Chem. Lett. 32:986–987.

    Article  CAS  Google Scholar 

  • Na, K. and Bae, Y. H. 2005. pH-Sensitive polymers for drug delivery. In Polymeric Drug Delivery Systems, ed. G. S. Kwon, pp. 129–194. Boca Raton: Taylor & Francis Group.

    Google Scholar 

  • Na, K., Lee, E. S., and Bae, Y. H. 2003. Adriamycin loaded pullulan acetate/sulfonamide conjugate nanoparticles responding to tumor pH: pH-dependent cell interaction, internalization and cytotoxicity in vitro. J. Control. Release 87:3–13.

    Article  PubMed  CAS  Google Scholar 

  • Na, K., Lee, K. H., and Bae, Y. H. 2004. pH-Sensitivity and pH-dependent interior structural change of self-assembled hydrogel nanoparticles of pullulan acetate/oligo-sulfonamide conjugate. J. Control. Release 97:513–525.

    PubMed  CAS  Google Scholar 

  • Na, K., Lee, K. H., Lee, D. H., and Bae, Y. H. 2006. Biodegradable thermo-sensitive nanoparticles from poly(L-lactic acid)/poly(ethylene glycol) alternating multi-block copolymer for potential anti-cancer drug carrier. Eur. J. Pharm. Sci. 27:115–122.

    Article  PubMed  CAS  Google Scholar 

  • Ojugo, A. S. E., Mcsheehy, P. M. J., Mcintyre, D. J. O., Mccoy, C., Stubbs, M., Leach, M. O., Judson, I. R., and Griffiths, J. R. 1999. Measurement of the extraceullar pH of solid tumours in mice by magnetic resonance spectroscopy: a comparison of exogenous 19F and 31P probes. NMR Biomed. 12:495–504.

    Article  PubMed  CAS  Google Scholar 

  • Okada, H. and Hillery, A. M. 2001. Vaginal Drug Delivery. New York: Taylor and Francis.

    Google Scholar 

  • Oupicky, D., Carlisle, R. C., and Seymour, L. W. 2001. Triggered intracellular activation of disulfide crosslinked polyelectrolyte gene delivery complexes with extended systemic circulation in vivo. Gene Ther. 8:713–724.

    Article  PubMed  CAS  Google Scholar 

  • Oupicky, D., Parker, A. L., and. Seymour, L. W. 2002. Laterally stabilized complexes of DNA with linear reducible polycations: strategy for triggered intracellular activation of DNA delivery vectors. J. Am. Chem. Soc. 124:8–9.

    Article  PubMed  CAS  Google Scholar 

  • Oupicky, D., Reschel, T., Konak, C., and Oupicka, L. 2003. Temperature-controlled behavior of self-assembly gene delivery vectors based on complexes of DNA with poly(L-lysine)-graft-poly(N-isopropylacrylamide). Macromolecules 36:6863–6872.

    Article  ADS  CAS  Google Scholar 

  • Owen, D. H. and Katz, D. F. 2005. A review of the physical and chemical properties of human semen and the formulation of a semen stimulant. J. Androl. 26:459–469.

    Article  PubMed  CAS  Google Scholar 

  • Pack, D. W., Hoffman, A. S., Pun, S., and Stayton, P. S. 2005. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 4:581–593.

    Article  PubMed  CAS  Google Scholar 

  • Park, J. S., Han, T. H., Lee, K. Y., Han, S. S., Hwang, J. J., Moon, D. H., Kim, S. Y., and Cho, Y. W. 2006. N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: endocytosis, exocytosis and drug release. J. Control. Release 115:37–45.

    Article  PubMed  CAS  Google Scholar 

  • Pichon, C., Goncalves, C., and Midoux, P. 2001. Histidine-rich peptides and polymers for nucleic acids delivery. Adv. Drug Deliv. Rev. 53:75–94.

    Article  PubMed  CAS  Google Scholar 

  • Ponce, A. M., Vujaskovic, Z., Yuan, F., Needham, D., and Dewhirst, M. W. 2006. Hyperthermia mediated liposomal drug delivery. Int. J. Hyperthermia 22:205–213.

    Article  PubMed  CAS  Google Scholar 

  • Read, M. L., Singh, S., Ahmed, Z., Stevenson, M., Briggs, S. S., Oupicky, D., Barrett, L. B., Spice, R., Kendall, M., Berry, M., Preece, J. A., Logan, A., and Seymour, L. W. 2005. A versatile reducible polycation-based system for efficient delivery of a broad range of nucleic acids. Nucleic Acids Res. 33:e86.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Cabello, J. C., Reguera, J., Girotti, A., Arias, F. J., and Alonso, M. 2006. Genetic engineering of protein-based polymers: the example of elastin like polymers. Adv. Polym. Sci. 200:119–167.

    Article  CAS  Google Scholar 

  • Rybak, S. L. and Murphy, R. F. 1998. Primary cell cultures from murine kidney and heart differ in endosomal pH. J. Cell. Physiol. 176:216–222.

    Article  PubMed  CAS  Google Scholar 

  • Rybak, S. L., Lanni, F., and Murphy, R. F. 1997. Theoretical considerations on the role of membrane potential in the regulation of endosomal pH. Biophys. J. 73:674–687.

    Article  PubMed  CAS  Google Scholar 

  • Sawant, R. M., Hurley, J. P., Salmaso, S., Kale, A., Tolcheva, E., Levchenko, T. S., and Torchilin, V. P. 2006. “Smart” drug delivery systems: double-targeting pH-responsive pharmaceutical nanocarriers. Bioconjug. Chem. 17:943–949.

    Article  PubMed  CAS  Google Scholar 

  • Schaffer, D. V., Fidelman, N. A., Dan, N., and Lauffenburger, D. A. 2000. Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery. Biotechnol. Bioeng. 67:598–606.

    Article  PubMed  CAS  Google Scholar 

  • Schmaljohann, D. 2006. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 58:1655–1670.

    Article  PubMed  CAS  Google Scholar 

  • Sehested, M., Skovsgarrd, T., van Deurs, B., and Winther-Nielsen, H. 1987. Increase in nonspecific adsorptive endocytosis in anthracycline- and vinca alkaloid-resistant Ehrlich ascites tumor cell lines. J. Natl. Cancer Inst. 78:171–179.

    PubMed  CAS  Google Scholar 

  • Sethuraman, V. A. and Bae, Y. H. 2007. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J. Control. Release 118:216–224.

    Article  PubMed  CAS  Google Scholar 

  • Sethuraman, V. A., Na, K., and Bae, Y. H. 2006. pH-Responsive sulfonamide/PEI system for tumor specific gene delivery: in vitro study. Biomacromolecules 7:64–70.

    Article  PubMed  CAS  Google Scholar 

  • Shin, J., Shum, P., and Thompson, D. H. 2003. Acid-triggered release via dePEGylation of DOPE liposomes containing acid-labile vinyl ether PEG-lipids. J. Control. Release 91:187–200.

    Article  PubMed  CAS  Google Scholar 

  • Simon, S. M. and Schindler, M. 1994. Cell biological mechanisms of multidrug resistance in tumors. Proc. Natl. Acad. Sci. USA. 91:3497–3504.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Sonawane, N. D., Szoka, F. C., Jr., and Verkman, A. S. 2003. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J. Biol. Chem. 278:44826–44831.

    Article  PubMed  CAS  Google Scholar 

  • Song, C. W. 1978. Effect of hyperthermia on vascular functions of normal tissues and experimental tumors: brief communication. J. Natl. Cancer Inst. 60:711–713.

    PubMed  CAS  Google Scholar 

  • Stubbs, M., Mcsheehy, R. M. J., Griffiths, J. R., and Bashford, L. 2000. Causes and consequences of tumour acidity and implications for treatment. Opinion 6:15–19.

    CAS  Google Scholar 

  • Szakacs, G., Paterson, J. K., Ludwig, J. A., Booth-Genthe, C., and Gottesman, M. M. 2006. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 5:219–234.

    Article  PubMed  CAS  Google Scholar 

  • Tacker, J. R. and Anderson, R. U. 1982. Delivery of antitumor drug to bladder cancer by use of phase transition liposomes and hyperthermia. J. Urology 127:1211–1214.

    CAS  Google Scholar 

  • Takeda, N., Nakamura, E., Yokoyama, M., and Okano, T. 2004. Temperature-responsive polymeric carriers incorporating hydrophobic monomers for effective transfection in small doses. J. Control. Release 95:343–355.

    Article  PubMed  CAS  Google Scholar 

  • Tannock, I. F. and Rotin, D. 1989. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 49:4373–4384.

    PubMed  CAS  Google Scholar 

  • Thomas, J. L. and Tirrell, D. A. 2000. Polymer-induced leakage of cations from dioleoyl phosphatidylcholine and phosphatidylglycerol liposomes. J. Control. Release 67:203–209.

    Article  PubMed  CAS  Google Scholar 

  • Tirrell, D. A., Takigawa, D. Y., and Seki, K. 1985. pH Sensitization of phospholipid vesicles via complexation with synthetic poly(carboxylic acid) s. Ann. N. Y. Acad. Sci. 446:237–248.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Türk, M., Dinçer, S., Yulu˘g, I. G., and Piskin, E. 2004. In vitro transfection of HeLa cells with temperature sensitive polycationic copolymers. J. Control. Release 96:325–340.

    Article  PubMed  CAS  Google Scholar 

  • Urry, D. W. 1997. Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J. Phys. Chem. B 101:11007–11028.

    Article  CAS  Google Scholar 

  • Urry, D. W., Luan, C. H., Parker, T. M., Gowda, D. C., Prasad, K. U., Reid, M. C., and Safavy, A. 1991. Temperature of polypeptide inverse temperature transition depends on mean residue hydrophobicity. J. Am. Chem. Soc. 113:4346–4348.

    Article  CAS  Google Scholar 

  • van Adelsberg, J. and Al-Awqati, Q. 1998. Regulation of cell pH by Ca2+ -mediated exocytotic insertion of H-ATPase. J. Cell Biol. 102:1638–1645.

    Article  Google Scholar 

  • van Sluis, R., Bhujwalla, Z. M., Raghunand, N., Ballesteros, P., Alvarez, J. Cerdán, S. Galons, J. P., and Gillies, R.J. 1999. In vivo imaging of extracellular pH using 1H MRSI. Magn. Reson. Med. 41:743–750.

    Article  PubMed  Google Scholar 

  • Wagner, E. 2004. Strategies to improve DNA polyplexes for in vivo gene transfer: will “artificial viruses” be the answer? Pharm. Res. 21:8–14.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Walker, G. F., Fella, C., Pelisek, J., Fahrmeir, J., Boeckle, S., Ogris, M., and Wagner, E. 2005. Toward synthetic viruses: endosomal pH-triggered deshielding of targeted polyplexes greatly enhances gene transfer in vitro and in vivo. Mol. Ther. 11:418–425.

    Article  PubMed  CAS  Google Scholar 

  • Warren, L., Jardillier, J. C., and Ordentlich, P. 1991. Secretion of lysosomal enzymes by drug-sensitive and multiple drug-resistant cells. Cancer Res. 51:1996–2001.

    PubMed  CAS  Google Scholar 

  • Wu, G., Fang, Y. Z., Yang, S., Lupton, J. R., and Turner, N. D. 2004. Glutathione metabolism and its implications for health. J. Nutr. 134:489–492.

    PubMed  CAS  Google Scholar 

  • Xie, A. F. and Granick, S. 2002. Phospholipid membranes as substrates for polymer adsorption. Nat. Mater. 1:129–133.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Yamagata, M., Hasuda, K., Stamato, T., and Tannock, I. F. 1998. The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase. Br. J. Cancer 77:1726–1731.

    PubMed  CAS  Google Scholar 

  • Yang, S. R., Lee, H. J., and Kim, J. D. 2006. Histidine-conjugated poly(amino acid) derivatives for the novel endosomolytic delivery carrier of doxorubicin. J. Control. Release 114:60–68.

    Article  PubMed  CAS  Google Scholar 

  • Yessine, M. A. and Leroux, J. C. 2004. Membrane-destabilizing polyanions: interaction with lipid bilayers and endosomal escape of biomacromolecules. Adv. Drug Deliv. Rev. 56:999–1021.

    Article  PubMed  CAS  Google Scholar 

  • Yessine, M. A., Lafleur, M., Meier, C., Petereit, H. U., and Leroux, J. C. 2003. Characterization of the membrane-destabilizing properties of different pH-sensitive methacrylic acid copolymers. Biochim. Biophys. Acta 1613:28–38.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama, M. 2002. Gene delivery using temperature-responsive polymeric carriers. Drug Discov. Today 7:426–432.

    Article  PubMed  CAS  Google Scholar 

  • Yuk, S. H. and Bae, Y. H. 1999. Phase-transition polymers for drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 16:385–423.

    PubMed  CAS  Google Scholar 

  • Zignani, M., Drummond, D. C., Meyer, O., Hong, K., and Leroux, J. C. 2000. In vitro characterization of a novel polymeric-based pH-sensitive liposome system. Biochim. Biophys. Acta 1463:383–394.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kang, H.C., Lee, E.S., Na, K., Bae, Y.H. (2008). Stimuli-Sensitive Nanosystems: For Drug and Gene Delivery. In: Torchilin, V. (eds) Multifunctional Pharmaceutical Nanocarriers. Fundamental Biomedical Technologies, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76554-9_6

Download citation

Publish with us

Policies and ethics