Skip to main content

Functionalized Dendrimers as Nanoscale Drug Carriers

  • Chapter
Multifunctional Pharmaceutical Nanocarriers

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 4))

Dendrimers represent a unique class of nanostructures, playing an important role in the field of nanobiotechnology. The term dendrimer is derived from Greek (dendra means tree and meros means part) and describes highly branched three-dimensional structures. The dendritic architecture was first reported in the late 1970s and the early 1980s by the research groups of Vogtle, Denkwalter, Tomalia, and Newkome (Lee 2005). Poly(amidoamine) (PAMAM) dendrimers were the first to be synthesized and developed in Dow Laboratories between 1979 and 1985. After patents on this new technology had been filed, the dendritic architecture was presented to the public by Tomalia in 1983. Although met with initial skepticism as most new scientific inventions are, dendrimers were soon accepted, and by 1991 the number of dendrimer-related publications and presentations began to climb rapidly (Tomalia and Frechet 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agashe, H.B., et al., 2006. Investigations of the toxicological profile of functionalized fifth-generation poly(propylene imine) dendrimer. J Pharm Pharmacol, 58(11): 1491–8.

    PubMed  CAS  Google Scholar 

  • Agrawal, P., U. Gupta, and N.K. Jain, 2007. Glycoconjugated peptide dendrimers-based nanoparticulate system for the delivery of chloroquine phosphate. Biomaterials, 28(22): 3349–59.

    PubMed  CAS  Google Scholar 

  • Ahn, T.S., et al., 2006. Light-harvesting in carbonyl-terminated phenylacetylene dendrimers: the role of delocalized excited states and the scaling of light-harvesting efficiency with dendrimer size. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys, 110(40): 19810–9.

    PubMed  CAS  Google Scholar 

  • Andre, S., et al., 1999. Lactose-containing Starburst dendrimers: influence of dendrimer generation and binding-site orientation of receptors (plant/animal lectins and immunoglobulins) on binding properties. Glycobiology, 9(11): 1253–61.

    PubMed  CAS  Google Scholar 

  • Ashton, P.R., et al., 1997. Synthesis of glycodendrimers by modification of poly(propylene imine) dendrimers. Chem–Eur J, 3(6): 974–84.

    CAS  Google Scholar 

  • Beezer, A.E., et al., 2003. Dendrimers as potential drug carriers: encapsulation of acidic hydrophobes within water soluble PAMAM derivatives. Tetrahedron, 59: 3873–80.

    CAS  Google Scholar 

  • Bhadra, D., et al., 2003. A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int J Pharm, 257(1/2): 111–24.

    PubMed  CAS  Google Scholar 

  • Bosman, A.W., H.M. Janssen, and E.W. Meijer, 1999. About dendrimers: structure, physical properties, and applications. Chem Rev, 99(7): 1665–88.

    PubMed  CAS  Google Scholar 

  • Chandrasekar, D., et al., 2007. Folate coupled poly(ethyleneglycol) conjugates of anionic poly(amidoamine) dendrimer for inflammatory tissue specific drug delivery. J Biomed Mater Res A, 82(1): 92–103.

    PubMed  Google Scholar 

  • Chauhan, A.S., et al., 2003. Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. J Control Release, 90(3): 335–43.

    PubMed  CAS  Google Scholar 

  • Couck, P., et al., 2005. Evaluation of the stratus CS fluorometer for the determination of plasma myoglobin. Acta Clin Belg, 60(2): 75–8.

    PubMed  CAS  Google Scholar 

  • Crampton, H.L. and E.E. Simanek, 2007. Dendrimers as drug delivery vehicles: non-covalent interactions of bioactive compounds with dendrimers. Polym Int, 56: 489–96.

    CAS  Google Scholar 

  • D’Emanuele, A. and D. Attwood, 2005. Dendrimer–drug interactions. Adv Drug Deliv Rev, 57(15): 2147–62.

    PubMed  Google Scholar 

  • D’Emanuele, A., et al., 2004. The use of a dendrimer–propranolol prodrug to bypass efflux transporters and enhance oral bioavailability. J Control Release, 95(3): 447–53.

    PubMed  Google Scholar 

  • Delort, E., et al., 2006. Synthesis and activity of histidine-containing catalytic peptide dendrimers. J Org Chem, 71(12): 4468–80.

    PubMed  CAS  Google Scholar 

  • Devarakonda, B., et al., 2005. Comparison of the aqueous solubilization of practically insoluble niclosamide by polyamidoamine (PAMAM) dendrimers and cyclodextrins. Int J Pharm, 304(1/2): 193–209.

    PubMed  CAS  Google Scholar 

  • Dhanikula, R.S. and P. Hildgen, 2007. Influence of molecular architecture of polyether-co-polyester dendrimers on the encapsulation and release of methotrexate. Biomaterials, 28(20): 3140–52.

    PubMed  CAS  Google Scholar 

  • Dufes, C., I.F. Uchegbu, and A.G. Schatzlein, 2005. Dendrimers in gene delivery. Adv Drug Deliv Rev, 57(15): 2177–202.

    PubMed  CAS  Google Scholar 

  • Duncan, R. and L. Izzo, 2005. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev, 57(15): 2215–37.

    PubMed  CAS  Google Scholar 

  • Dutta, T. and N.K. Jain, 2007. Targeting potential and anti-HIV activity of lamivudine loaded mannosylated poly(propyleneimine) dendrimer. Biochim Biophys Acta, 1770(4): 681–6.

    PubMed  CAS  Google Scholar 

  • Dutta, T., et al., 2007. Poly(propyleneimine) dendrimer based nanocontainers for targeting of efavirenz to human monocytes/macrophages in vitro. J Drug Target, 15(1): 89–98.

    PubMed  CAS  Google Scholar 

  • Eichman, J.D., et al., 2003. The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. Pharm Sci Technol Today, 3(7): 232–45.

    Google Scholar 

  • El-Sayed, M., et al., 2002. Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. J Control Release, 81(3): 355–65.

    PubMed  CAS  MathSciNet  Google Scholar 

  • El-Sayed, M., et al., 2003. Influence of surface chemistry of poly(amidoamine) dendrimers on Caco-2 cell monolayers. J Bioactive Compat Polym, 18: 7–21.

    CAS  MathSciNet  Google Scholar 

  • El-Sayed, M., et al., 2003. Transport mechanism(s) of poly(amidoamine) dendrimers across Caco-2 cell monolayers. Int J Pharm, 265(1/2): 151–7.

    PubMed  CAS  Google Scholar 

  • Esfand, R. and D.A. Tomalia, 2001. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today, 6(8): 427–36.

    PubMed  CAS  Google Scholar 

  • Fahmy, T.M., J.P. 2007. Schneck, and W.M. Saltzman, A nanoscopic multivalent antigen-presenting carrier for sensitive detection and drug delivery to T cells. Nanomedicine, 3(1): 75–85.

    Google Scholar 

  • Florence, A. (Ed.), 2005. Dendrimers: a versatile targeting platform. Adv Drug Deliv Rev, 57(15): 2101–286.

    Google Scholar 

  • Gillies, E.R. and J.M. Frechet, 2002. Designing macromolecules for therapeutic applications: polyester dendrimer–poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. J Am Chem Soc, 124(47): 14137–46.

    PubMed  CAS  Google Scholar 

  • Gillies, E.R., et al., 2005. Biological evaluation of polyester dendrimer: poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. Mol Pharm, 2(2): 129–38.

    PubMed  CAS  MathSciNet  Google Scholar 

  • Gong, L.Z., Q.S. Hu, and L. Pu, 2001. Optically active dendrimers with a binaphthyl core and phenylene dendrons: light harvesting and enantioselective fluorescent sensing. J Org Chem, 66(7): 2358–67.

    PubMed  CAS  Google Scholar 

  • Gupta, U., et al., 2006. A review of in vitro–in vivo investigations on dendrimers: the novel nanoscopic drug carriers. Nanomedicine, 2(2): 66–73.

    PubMed  CAS  Google Scholar 

  • Haba, Y., et al., 2005. Synthesis of biocompatible dendrimers with a peripheral network formed by linking of polymerizable groups. Polymer, 46: 1813–20.

    CAS  MathSciNet  Google Scholar 

  • Hawker, C.J. and J.M. Frechet, 1990. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc, 112: 7638–47.

    CAS  Google Scholar 

  • Hong, S., et al., 2007. The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol, 14(1): 107–15.

    PubMed  CAS  Google Scholar 

  • Huang, R.Q., et al., 2007. Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. FASEB J, 21(4): 1117–25.

    PubMed  CAS  Google Scholar 

  • Islam, M.T., I.J. Majoros, and J.R. Baker Jr., 2005. HPLC analysis of PAMAM dendrimer based multifunctional devices. J Chromatogr B Anal Technol Biomed Life Sci, 822(1/2): 21–6.

    CAS  Google Scholar 

  • Jansen, J.F.G.A., E.M.M. 1994. Debrabandervandenberg, and E.W. Meijer, Encapsulation of guest molecules into a dendritic box. Science, 266: 1226–9.

    Google Scholar 

  • Jevprasesphant, R., et al., 2003a. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm Res, 20(10): 1543–50.

    PubMed  CAS  Google Scholar 

  • Jevprasesphant, R., et al., 2003b. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm, 252(1/2): 263–6.

    PubMed  CAS  Google Scholar 

  • Jevprasesphant, R., et al., 2004. Transport of dendrimer nanocarriers through epithelial cells via the transcellular route. J Control Release, 97(2): 259–67.

    PubMed  CAS  Google Scholar 

  • Kabanov, V.A., et al., 1998. Polyelectrolyte behavior of astramol poly(propyleneimine) dendrimers. Macromolecules, 31(15): 5142–4.

    PubMed  ADS  CAS  Google Scholar 

  • Kitchens, K.M., M.E. El-Sayed, and H. Ghandehari, 2005. Transepithelial and endothelial transport of poly(amidoamine) dendrimers. Adv Drug Deliv Rev, 57(15): 2163–76.

    PubMed  CAS  Google Scholar 

  • Kitchens, K.M., et al., 2006. Transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers: influence of size, charge and fluorescent labeling. Pharm Res, 23(12): 2818–26.

    PubMed  CAS  Google Scholar 

  • Kitchens, K.M., et al., 2005. Endocytosis and interaction of poly(amidoamine) dendrimers with caco-2 cells. Pharm Res, 24(11): 2138–2145.

    Google Scholar 

  • Kitchens, K.M., et al., Endocytosis inhibitors prevent poly(amidoamine) dendrimer internalization and permeability across Caco-2 cells. Mol Pharm, in press.

    Google Scholar 

  • Kobayashi, H. and M.W. Brechbiel, 2005. Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev, 57(15): 2271–86.

    PubMed  CAS  Google Scholar 

  • Kobayashi, H., et al., 2004. Application of a macromolecular contrast agent for detection of alterations of tumor vessel permeability induced by radiation. Clin Cancer Res, 10(22): 7712–20.

    PubMed  CAS  Google Scholar 

  • Kojima, C., et al., 2000. Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug Chem, 11(6): 910–7.

    PubMed  CAS  MathSciNet  Google Scholar 

  • Kolhatkar, R.B., et al., 2007. Surface acetylation of poly(amidoamine) (PAMAM) dendrimers decreases cytotoxicity while maintaining membrane permeability. Bioconjug Chem, 18(6): 2054–2060.

    PubMed  CAS  Google Scholar 

  • Kolhe, P., et al., 2004. Hyperbranched polymer–drug conjugates with high drug payload for enhanced cellular delivery. Pharm Res, 21(12): 2185–95.

    PubMed  CAS  Google Scholar 

  • Kolhe, P., et al., 2006. Preparation, cellular transport, and activity of polyamidoamine-based dendritic nanodevices with a high drug payload. Biomaterials, 27(4): 660–9.

    PubMed  CAS  Google Scholar 

  • Konda, S.D., et al., 2000. Development of a tumor-targeting MR contrast agent using the high-affinity folate receptor: work in progress. Invest Radiol, 35(1): 50–7.

    PubMed  CAS  Google Scholar 

  • Konda, S.D., et al., 2001. Specific targeting of folate–dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts. Magma, 12(2/3): 104–13.

    PubMed  CAS  Google Scholar 

  • Koyama, Y., et al., 2007. A dendrimer-based nanosized contrast agent dual-labeled for magnetic resonance and optical fluorescence imaging to localize the sentinel lymph node in mice. J Magn Reson Imaging, 25(4): 866–71.

    PubMed  MathSciNet  Google Scholar 

  • Langereis, S., et al., 2006. Evaluation of Gd(III) DTPA-terminated poly(propylene imine) dendrimers as contrast agents for MR imaging. NMR Biomed, 19(1): 133–41.

    PubMed  CAS  Google Scholar 

  • Lee, C.C., et al., 2005. Designing dendrimers for biological applications. Nat Biotechnol, 23(12): 1517–26.

    PubMed  CAS  Google Scholar 

  • Lee, C.C., et al., 2006. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci USA, 103(45): 16649–54.

    PubMed  ADS  CAS  Google Scholar 

  • Liu, M., K. Kono, and J.M. Frechet, 2000. Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents. J Control Release, 65(1/2): 121–31.

    PubMed  CAS  Google Scholar 

  • Ma, M., et al., 2007. Evaluation of polyamidoamine (PAMAM) dendrimers as drug carriers of anti-bacterial drugs using sulfamethoxazole (SMZ) as a model drug. Eur J Med Chem, 42(1): 93–8.

    PubMed  CAS  Google Scholar 

  • Maeda, H., et al., 2000. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release, 65(1/2): 271–84.

    PubMed  CAS  Google Scholar 

  • Majoros, I.J., et al., 2005. Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy. J Med Chem, 48(19): 5892–9.

    PubMed  CAS  Google Scholar 

  • Majoros, I.J., et al., 2006. PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules, 7(2): 572–9.

    PubMed  CAS  Google Scholar 

  • Malik, N., E.G. Evagorou, and R. Duncan, 1999. Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs, 10(8): 767–76.

    PubMed  CAS  Google Scholar 

  • Malik, N., et al., 2000. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125 I-labelled polyamidoamine dendrimers in vivo. J Control Release, 65(1/2): 133–48.

    PubMed  CAS  MathSciNet  Google Scholar 

  • Mamede, M., et al., 2004. Hepatocyte targeting of 111 In-labeled oligo-DNA with avidin or avidin-dendrimer complex. J Control Release, 95(1): 133–41.

    PubMed  CAS  Google Scholar 

  • Manunta, M., et al., 2004. Gene delivery by dendrimers operates via a cholesterol dependent pathway. Nucleic Acids Res, 32(9): 2730–9.

    PubMed  CAS  Google Scholar 

  • Markatou, E., et al., 2007. Molecular interactions between dimethoxycurcumin and PAMAM dendrimer carriers. Int J Pharm, 339(1/2): 231–6.

    PubMed  CAS  Google Scholar 

  • McCarthy, T.D., et al., 2005. Dendrimers as drugs: discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention. Mol Pharm, 2(4): 312–8.

    PubMed  CAS  MathSciNet  Google Scholar 

  • Milhem, O.M., et al., 2000. Polyamidoamine Starburst dendrimers as solubility enhancers. Int J Pharm, 197(1/2): 239–41.

    PubMed  CAS  Google Scholar 

  • Miura, N., et al., 1999. Complex formation by electrostatic interaction between carboxyl-terminated dendrimers and oppositely charged polyelectrolytes. Langmuir, 15(12): 4245–50.

    CAS  Google Scholar 

  • Muller, C., et al., 2004. Site-isolation effects in a dendritic nickel catalyst for the oligomerization of ethylene. J Am Chem Soc, 126(45): 14960–3.

    PubMed  Google Scholar 

  • Na, M., et al., 2006. Dendrimers as potential drug carriers. II. Prolonged delivery of ketoprofen by in vitro and in vivo studies. Eur J Med Chem, 41(5): 670–4.

    PubMed  Google Scholar 

  • Najlah, M., et al., 2007. In vitro evaluation of dendrimer prodrugs for oral drug delivery. Int J Pharm, 336(1): 183–90.

    PubMed  CAS  Google Scholar 

  • Nantalaksakul, A., et al., 2006. Light harvesting dendrimers. Photosynth Res, 87(1): 133–50.

    PubMed  CAS  Google Scholar 

  • Newkome, G.R., et al., 1998. Isocyanate-based dendritic building blocks: combinatorial tier construction and macromolecular-property modification. Angew Chem Int Ed, 37(3): 307–10.

    CAS  Google Scholar 

  • Okuda, T., et al., 2006a. Biodistribution characteristics of amino acid dendrimers and their PEGylated derivatives after intravenous administration. J Control Release, 114(1): 69–77.

    PubMed  CAS  MathSciNet  Google Scholar 

  • Okuda, T., et al., 2006b. PEGylated lysine dendrimers for tumor-selective targeting after intravenous injection in tumor-bearing mice. J Control Rel, 116(3): 330–6.

    CAS  MathSciNet  Google Scholar 

  • Ooya, T., J. Lee, and K. Park, 2003. Effects of ethylene glycol-based graft, star-shaped, and dendritic polymers on solubilization and controlled release of paclitaxel. J Control Release, 93(2): 121–7.

    PubMed  CAS  Google Scholar 

  • Page, D., D. Zanini, and R. Roy, 1996. Macromolecular recognition: effect of multivalency on the inhibition of binding of yeast mannan to concanavalin A and pea lectins by mannosylated dendrimers. Bioorg Med Chem, 4(11): 1949–61.

    PubMed  CAS  Google Scholar 

  • Paleos, C.M., et al., 2004. Acid- and salt-triggered multifunctional poly(propylene imine) dendrimer as a prospective drug delivery system. Biomacromolecules, 5(2): 524–9.

    PubMed  CAS  Google Scholar 

  • Pan, G., et al., 2005. Studies on PEGylated and drug-loaded PAMAM dendrimers. J Bioactive Compat Polym, 20(1): 113–28.

    CAS  Google Scholar 

  • Patri, A.K., J.F. Kukowska-Latallo, and J.R. Baker Jr., 2005. Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev, 57(15): 2203–14.

    PubMed  CAS  Google Scholar 

  • Prieto, M.J., et al., 2006. Nanomolar cationic dendrimeric sulfadiazine as potential antitoxoplasmic agent. Int J Pharm, 326(1/2): 160–8.

    PubMed  CAS  Google Scholar 

  • Pugh, V.J., et al., 2001. Optically active BINOL core-based phenyleneethynylene dendrimers for the enantioselective fluorescent recognition of amino alcohols. J Org Chem, 66(18): 6136–40.

    PubMed  CAS  Google Scholar 

  • Quintana, A., et al., 2002. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res, 19(9): 1310–6.

    PubMed  CAS  Google Scholar 

  • Reek, J.N., et al., 2002. Core and periphery functionalized dendrimers for transition metal catalysis: a covalent and a non-covalent approach. J Biotechnol, 90(3/4): 159–81.

    PubMed  CAS  Google Scholar 

  • Roy, R., et al., 1993. Solid-phase synthesis of dendritic sialoside inhibitors of influenza A virus haemagglutinin. J Chem Soc Chem Commun, (24): 1869–72.

    Google Scholar 

  • Sato, N., et al., 2003. Synthesis of dendrimer-based biotin radiopharmaceuticals to enhance whole-body clearance. Nucl Med Biol, 30(6): 617–25.

    PubMed  CAS  Google Scholar 

  • Seib, F.P., A.T. Jones, and R. Duncan, 2007. Comparison of the endocytic properties of linear and branched PEIs, and cationic PAMAM dendrimers in B16f10 melanoma cells. J Control Release, 117(3): 291–300.

    PubMed  CAS  Google Scholar 

  • Svenson, S. and D.A. Tomalia, 2005. Dendrimers in biomedical applications–reflections on the field. Adv Drug Deliv Rev, 57(15): 2106–29.

    PubMed  CAS  Google Scholar 

  • Svobodova, L., et al., 2004. Properties of mixed alkanethiol–dendrimer layers and their applications in biosensing. Bioelectrochemistry, 63(1/2): 285–9.

    PubMed  CAS  Google Scholar 

  • Tang, M.X., C.T. Redemann, and F.C. Szoka Jr., 1996. In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem, 7(6): 703–14.

    PubMed  CAS  Google Scholar 

  • Thomas, T.P., et al., 2005. Targeting and inhibition of cell growth by an engineered dendritic nanodevice. J Med Chem, 48(11): 3729–35.

    PubMed  CAS  Google Scholar 

  • Tomalia, D.A. and J.M. Frechet, Dendrimers and other dendritic polymers. Wiley, 2002.

    Google Scholar 

  • Tsutsumiuchi, K., K. Aoi, and M. Okada, 1999. Globular carbohydrate macromolecule “Sugar Balls” IV. Synthesis of dendritic nanocapsules with molecular recognition sites on periphery. Polym J, 31(11–1): 935–41.

    CAS  Google Scholar 

  • Vandamme, T.F. and L. Brobeck, 2005. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release, 102(1): 23–38.

    PubMed  CAS  Google Scholar 

  • Vrasidas, I., et al., 2001. Synthesis of lactose dendrimers and multivalency effects in binding to the cholera toxin B subunit. Eur J Org Chem, 2001(24): 4685–92.

    Google Scholar 

  • Wada, K., et al., 2005. Improvement of gene delivery mediated by mannosylated dendrimer/alpha-cyclodextrin conjugates. J Control Release, 104(2): 397–413.

    PubMed  CAS  Google Scholar 

  • Wang, J.L., et al., 2006. Nanosized gradient pi-conjugated thienylethynylene dendrimers for light harvesting: synthesis and properties. Org Lett, 8(11): 2281–4.

    PubMed  CAS  Google Scholar 

  • Wang, X., et al., 2007. Synthesis, characterization, and in vitro activity of dendrimer–streptokinase conjugates. Bioconjug Chem, 18(3): 791–9.

    PubMed  CAS  Google Scholar 

  • Wiwattanapatapee, R., et al., 2000. Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system? Pharm Res, 17(8): 991–8.

    PubMed  CAS  Google Scholar 

  • Wiwattanapatapee, R., L. Lomlim, and K. Saramunee, 2003. Dendrimer conjugates for colonic delivery of 5-aminosalicylic acid. J Control Release, 88(1): 1–9.

    PubMed  CAS  Google Scholar 

  • Woller, E.K., et al., 2003. Altering the strength of lectin binding interactions and controlling the amount of lectin clustering using mannose/hydroxyl-functionalized dendrimers. J Am Chem Soc, 125(29): 8820–6.

    PubMed  CAS  Google Scholar 

  • Wu, G., et al., 2006a. Targeted delivery of methotrexate to epidermal growth factor receptor-positive brain tumors by means of cetuximab (IMC-C225) dendrimer bioconjugates. Mol Cancer Ther, 5(1): 52–9.

    PubMed  CAS  Google Scholar 

  • Wu, G., et al., 2007. Molecular targeting and treatment of an epidermal growth factor receptor-positive glioma using boronated cetuximab. Clin Cancer Res, 13(4): 1260–8.

    PubMed  CAS  Google Scholar 

  • Wu, L., et al., 2006b. Phosphine dendrimer-stabilized palladium nanoparticles, a highly active and recyclable catalyst for the Suzuki–Miyaura reaction and hydrogenation. Org Lett, 8(16): 3605–8.

    PubMed  CAS  Google Scholar 

  • Yang, H. and S.T. Lopina, 2003. Penicillin V-conjugated PEG–PAMAM star polymers. J Biomater Sci Polym Ed, 14(10): 1043–56.

    PubMed  CAS  Google Scholar 

  • Yin, R., et al., 2001. Dendrimer-based alert ticket: a novel nanodevice for bio-agent detection. Polym Mater Sci Eng, 84: 856.

    CAS  Google Scholar 

  • Yiyun, C. and X. Tongwen, 2005a. Dendrimers as potential drug carriers. I. Solubilization of non-steroidal anti-inflammatory drugs in the presence of polyamidoamine dendrimers. Eur J Med Chem, 40(11): 1188–92.

    PubMed  Google Scholar 

  • Yiyun, C. and X. Tongwen, 2005b. Solubility of nicotinic acid in polyamidoamine dendrimer solutions. Eur J Med Chem, 40(12): 1384–9.

    PubMed  Google Scholar 

  • Yiyun, C., X. Tongwen, and F. Rongqiang, 2005. Polyamidoamine dendrimers used as solubility enhancers of ketoprofen. Eur J Med Chem, 40(12): 1390–3.

    PubMed  Google Scholar 

  • Zeng, F. and S.C. Zimmerman, 1997. Dendrimers in supramolecular chemistry: from molecular recognition to self-assembly. Chem Rev, 97(5): 1681–712.

    PubMed  CAS  Google Scholar 

  • Zhang, H., et al., 1999. Interaction of a polycation with small oppositely charged dendrimers. J Phys Chem B, 103: 2347–54.

    CAS  Google Scholar 

  • Zhuo, R.X., B. Du, and Z.R. Lu, 1999. In vitro release of 5-fluorouracil with cyclic core dendritic polymer. J Control Release, 57(3): 249–57.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kolhatkar, R., Sweet, D., Ghandehari, H. (2008). Functionalized Dendrimers as Nanoscale Drug Carriers. In: Torchilin, V. (eds) Multifunctional Pharmaceutical Nanocarriers. Fundamental Biomedical Technologies, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76554-9_7

Download citation

Publish with us

Policies and ethics