Skip to main content

Quantum Dots and Other Fluorescent Nanoparticles: Quo Vadis in the Cell?

  • Chapter
Bio-Applications of Nanoparticles

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 620))

Abstract

An exponentially growing number of nanotechnology-based products are providing new platforms for research in different scientific disciplines (e.g., life sciences and medicine). Biocompatible nanoparticles are expected to significantly impact the development of new approaches in medical diagnoses and drug delivery; however, very little is known about the effects of long-term exposure of different nanoparticles in different cell types and tissues. The first objective of this chapter is to provide a brief account of the current status of fluorescent nanoparticles (i.e., quantum dots, fluorescently-labeled micelles, and FloDots) that serve as tools for bioimaging and therapeutics. The second objective of this chapter is to describe the modes and mechanisms of nanoparticle-cell interactions and the “potential” toxic consequences thereof.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferrari M. Cancer nanotechnology: Opportunities and challenges. Nat Rev Cancer 2005; 5(3):161–171.

    Article  PubMed  CAS  Google Scholar 

  2. Silva GA. Neuroscience nanotechnology: Progress, opportunities and challenges. Nat Rev Neurosci 2006; 7(1):65–74.

    Article  PubMed  CAS  Google Scholar 

  3. Bakalova R, Ohba H, Zhelev Z et al. Quantum dots as photosensitizers? Nat Biotechnol 2004; 22(11):1360–1361.

    Article  PubMed  CAS  Google Scholar 

  4. Kam NW, O’Connell M, Wisdom JA et al. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 2005; 102(33):11600–11605.

    Article  PubMed  CAS  Google Scholar 

  5. Jain KK. Nanoparticles as targeting ligands. Trends Biotechnol 2006; 24(4):143–145.

    Article  PubMed  CAS  Google Scholar 

  6. Weissleder R, Kelly K, Sun EY et al. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol 2005; 23(11):1418–1423.

    Article  PubMed  CAS  Google Scholar 

  7. Giepmans BN, Adams SR, Ellisman MH et al. The fluorescent toolbox for assessing protein location and function. Science 2006;312(5771):217–224.

    Article  PubMed  CAS  Google Scholar 

  8. Medintz IL, Uyeda HT, Goldman ER et al. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005; 4(6):435–446.

    Article  PubMed  CAS  Google Scholar 

  9. Jaiswal JK, Mattoussi H, Mauro JM et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 2003; 21(1):47–51.

    Article  PubMed  CAS  Google Scholar 

  10. Yao G, Wang L, Wu Y et al. FloDots: Luminescent nanoparticles. Anal Bioanal Chem 2006; 385(3):518–524.

    Article  PubMed  CAS  Google Scholar 

  11. Savic R, Eisenberg A, Maysinger D. Block copolymer micelles as delivery vehicles of hydrophobic drugs: Micelle-cell interactions. J Drug Target 2006; 14(6):343–355.

    Article  PubMed  CAS  Google Scholar 

  12. Savic R, Luo L, Eisenberg A et al. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 2003; 300(5619):615–618.

    Article  PubMed  CAS  Google Scholar 

  13. Alivisatos AP. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996; 271:933–937.

    Article  CAS  Google Scholar 

  14. Dahan M, Levi S, Luccardini C et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 2003; 302(5644):442–445.

    Article  PubMed  CAS  Google Scholar 

  15. Larson DR, Zipfel WR, Williams RM et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003; 300(5624):1434–1436.

    Article  PubMed  CAS  Google Scholar 

  16. Maysinger D, Berezovska O, Savic R et al. Block copolymers modify the internalization of micelle-incorporated probes into neural cells. Biochim Biophys Acta 2001; 1539(3):205–217.

    Article  PubMed  CAS  Google Scholar 

  17. Torchilin VP. Fluorescence microscopy to follow the targeting of liposomes and micelles to cells and their intracellular fate. Adv Drug Deliv Rev 2005; 57(1):95–109.

    Article  PubMed  CAS  Google Scholar 

  18. Allen C, Yu Y, Eisenberg A et al. Cellular internalization of PCL(20)-b-PEO(44) block copolymer micelles. Biochim Biophys Acta 1999;1421(1):32–38.

    Article  PubMed  CAS  Google Scholar 

  19. Philipp Seib F, Jones AT, Duncan R. Establishment of subcellular fractionation techniques to monitor the intracellular fate of polymer therapeutics I: Differential centrifugation fractionation B16F10 cells and use to study the intracellular fate of HPMA copolymer-doxorubicin. J Drug Target 2006; 14(6):375–390.

    Article  PubMed  CAS  Google Scholar 

  20. Duncan R. Polymer conjugates an anticancer nanomedicines. Nat Rev Cancer 2006; 6(9):688–701.

    Article  PubMed  CAS  Google Scholar 

  21. Maeda H, Wu J, Sawa T et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J Control Release 2000; 65(1–2):271–284.

    Article  PubMed  CAS  Google Scholar 

  22. Wang L, Yang C, Tan W. Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Lett 2005; 5(1):37–43.

    Article  PubMed  CAS  Google Scholar 

  23. Pathak S, Cao E, Davidson MC et al. Quantum dot applications to neuroscience: New tools for probing neurons and glia. J Neurosci 2006; 26(7):1893–1895.

    Article  PubMed  CAS  Google Scholar 

  24. Gaponik N, Talapin DV, Rogach AL et al. Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes. J Phys Chem B 2002; 106:7177–7185.

    Article  CAS  Google Scholar 

  25. Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998; 281(5385):2016–2018.

    Article  PubMed  CAS  Google Scholar 

  26. Pavlovic E, Quist AP, Gelius U et al. Surface functionalization of silicon oxide at room temperature and atmospheric pressure. J Colloid Interface Sci 2002; 54(1):200–203.

    Article  CAS  Google Scholar 

  27. Pinaud F, King D, Moore HP et al. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc 2004; 126(19):6115–6123.

    Article  PubMed  CAS  Google Scholar 

  28. Dubertret B, Skourides P, Norris DJ et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002; 298(5599):1759–1762.

    Article  PubMed  CAS  Google Scholar 

  29. Gao X, Cui Y, Levenson RM et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004; 22(8):969–976.

    Article  PubMed  CAS  Google Scholar 

  30. Bharali DJ, Lucey DW, Jayakumar H et al. Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. J Am Chem Soc 2005; 127(32):11364–11371.

    Article  PubMed  CAS  Google Scholar 

  31. Wu X, Liu H, Liu J et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 2003; 21(1):41–46.

    Article  PubMed  CAS  Google Scholar 

  32. Hoshino A, Fujioka K, Oku T et al. Quantum dots targeted to the assigned organelle in living cells. Microbiol Immunol 2004; 48(12):985–994.

    PubMed  CAS  Google Scholar 

  33. Vu TQ, Maddipati R, Blute TA et al. Peptide-conjugated quantum dots activate neuronal receptors and initiate downstream signaling of neurite growth. Nano Lett 2005; 5(4):603–607.

    Article  PubMed  CAS  Google Scholar 

  34. Hermanson GT. Bioconjugate Techniques. San Diego: Academic Press, 1996.

    Google Scholar 

  35. Torchilin VP, Narula J, Halpern E et al. Poly (ethylene glycol)-coated anti-cardiac myosin immunoliposomes: Factors influencing targeted accumulation in the infarcted myocardium. Biochim Biophys Acta 1996; 1279(1):75–83.

    Article  PubMed  Google Scholar 

  36. Torchilin VP, Lukyanov AN, Gao Z et al. Immunomicelles: Targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci USA 2003; 100(10):6039–6044.

    Article  PubMed  CAS  Google Scholar 

  37. Savic R, Azzam T, Eisenberg A et al. Assessment of the integrity of poly(caprolactone)-b-poly(ethylene oxide) micelles under biological conditions: A fluorogenic-based approach. Langmuir 2006; 22(8):3570–3578.

    Article  PubMed  CAS  Google Scholar 

  38. Michalet X, Pinaud FF, Bentolila LA et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005; 307(5709):538–544.

    Article  PubMed  CAS  Google Scholar 

  39. Jiang W, Papa E, Fischer H et al. Semiconductor quantum dots as contrast agents for whole animal imaging. Trends Biotechnol 2004; 22(12):607–609.

    Article  PubMed  CAS  Google Scholar 

  40. Aldana J, Lavelle N, Wang Y et al. Size-dependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals. J Am Chem Soc 2005; 127(8):2496–2504.

    Article  PubMed  CAS  Google Scholar 

  41. Aldana J, Wang YA, Peng X. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J Am Chem Soc 2001; 123(36):8844–8850.

    Article  PubMed  CAS  Google Scholar 

  42. Rossin R, Pan D, Qi K et al. 64Cu-labeled folate-conjugated shell cross-linked nanoparticles for tumor imaging and radiotherapy: Synthesis, radiolabeling, and biologic evaluation. J Nucl Med 2005; 46(7):1210–1218.

    PubMed  Google Scholar 

  43. Thurmond KB, Kowalewski T, Wooley KL. Shell cross-linked knedels: A synthetic study of the factors affecting the dimensions and properties of amphiphilic core-shell nanospheres. J Am Chem Soc 1997; 119(28):6656–6665.

    Article  CAS  Google Scholar 

  44. Thurmond KB, Kowalewski T, Wooley KL. Water-soluble knedel-like structures: The preparation of shell-cross-linked small particles. J Am Chem Soc 1996; 118(30):7239–7240.

    Article  CAS  Google Scholar 

  45. Cheng C, Qi K, Khoshdel E et al. Tandem synthesis of core-shell brush copolymers and their transformation to peripherally cross-linked and hollowed nanostructures. J Am Chem Soc 2006; 128(21):6808–6809.

    Article  PubMed  CAS  Google Scholar 

  46. Joralemon MJ, O’Reilly RK, Hawker CJ et al. Shell click-crosslinked (SCC) nanoparticles: A new methodology for synthesis and orthogonal functionalization. J Am Chem Soc 2005; 127(48):16892–16899.

    Article  PubMed  CAS  Google Scholar 

  47. Kim S, Lim YT, Soltesz EG et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 2004; 22(1):93–97.

    Article  PubMed  CAS  Google Scholar 

  48. Voura EB, Jaiswal JK, Mattoussi H et al. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 2004; 10(9):993–998.

    Article  PubMed  CAS  Google Scholar 

  49. So MK, Xu C, Loening AM et al. Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 2006; 24(3):339–343.

    Article  PubMed  CAS  Google Scholar 

  50. Akerman ME, Chan WC, Laakkonen P et al. Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 2002; 99(20):12617–12621.

    Article  PubMed  CAS  Google Scholar 

  51. Fisher HC, Liu L, Pang SK et al. Pharmacokinetics of nanoscale quantum dots: In vivo distribution, Sequestration, and clearance in the rat. Adv Function Mater 2006; 16(10):1299–1305.

    Article  CAS  Google Scholar 

  52. Murphy L. Biosensors and bioelectrochemistry. Curr Opin Chem Biol 2006; 10(2):177–184.

    Article  PubMed  CAS  Google Scholar 

  53. Zhang Y, Lim CT, Ramakrishna S et al. Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci Mater Med 2005; 16(10):933–946.

    Article  PubMed  CAS  Google Scholar 

  54. Gruner G. Carbon nanotube transistors for biosensing applications. Anal Bioanal Chem 2006; 384(2):322–335.

    Article  PubMed  CAS  Google Scholar 

  55. Watson P, Jones AT, Stephens DJ. Intracellular trafficking pathways and drug delivery: Fluorescence imaging of living and fixed cells. Adv Drug Deliv Rev 2005; 57(1):43–61.

    Article  PubMed  CAS  Google Scholar 

  56. Santra S, Zhang P, Wang K et al. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal Chem 2001; 73(20):4988–4993.

    Article  PubMed  CAS  Google Scholar 

  57. Zhao X, Hilliard LR, Mechery SJ et al. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Natl Acad Sci USA 2004; 101(42):15027–15032.

    Article  PubMed  CAS  Google Scholar 

  58. Stone V, Donaldson K. Nanotoxicology: Signs of stress. Nature Nanotechnology 2006; 1(1):23–24.

    Article  PubMed  CAS  Google Scholar 

  59. Nel A, Xia T, Madler L et al. Toxic potential of materials at the nanolevel. Science 2006; 311(5761):622–627.

    Article  PubMed  CAS  Google Scholar 

  60. Derfus AM, Chen WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Letters 2004; 4:11–18.

    Article  CAS  Google Scholar 

  61. Lovric J, Cho SJ, Winnik FM et al. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 2005; 12(11):1227–1234.

    Article  PubMed  CAS  Google Scholar 

  62. Kirchner C, Liedl T, Kudera S et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 2005; 5(2):331–338.

    Article  PubMed  CAS  Google Scholar 

  63. Oberdorster E. Manufactured nanomaterials (fullerences, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 2004; 112(10):1058–1062.

    Article  PubMed  CAS  Google Scholar 

  64. Lam CW, James JT, McCluskey R et al. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 2004; 77(1):126–134.

    Article  PubMed  CAS  Google Scholar 

  65. Ipe BI, Lehnig M, Niemeyer CM. On the generation of free radical species from quantum dots. Small 2005; 1(7):706–709.

    Article  PubMed  CAS  Google Scholar 

  66. Samia AC, Chen X, Burda C. Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 2003; 125(51):15736–15737.

    Article  PubMed  CAS  Google Scholar 

  67. Green M, Howman E. Semiconductor quantum dots and free radical induced DNA nicking. Chem Commun (Camb) 2005; (1):121–123.

    Google Scholar 

  68. Cho S, Maysinger D, Jain M et al. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 2007; 23(4):1974–1980.

    Article  PubMed  CAS  Google Scholar 

  69. Toews AD, Lee SY, Popko B et al. Tellurium-induced neuropathy A model for reversible reductions in myelin protein gene expression. J Neurosci Res 1990; 26(4):501–507.

    Article  PubMed  CAS  Google Scholar 

  70. Moghimi SM, Hunter AC, Murray JC. Nanomedicine: Current status and future prospects. FASEB J 2005; 19(3):311–330.

    Article  PubMed  CAS  Google Scholar 

  71. Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 2006; 112(3):630–648.

    Article  PubMed  CAS  Google Scholar 

  72. Xia T, Kovochich M, Brant J et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 2006; 6(8):1794–1807.

    Article  PubMed  CAS  Google Scholar 

  73. Noble M, Mayer-Proschel M, Proschel C. Redox regulation of precursor cell function: Insights and paradoxes. Antioxid Redox Signal 2005; 7(11–12):1456–1467.

    Article  PubMed  CAS  Google Scholar 

  74. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000; 408(6809):239–247.

    Article  PubMed  CAS  Google Scholar 

  75. Clarke SJ, Hollmann CA, Zhang Z et al. Photophysics of dopamine-modified quantum dots and effects on biological systems. Nat Mater 2006; 5(5):409–417.

    Article  PubMed  CAS  Google Scholar 

  76. Hansen JM, Go YM, Jones DP. Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu Rev Pharmacol Toxicol 2006; 46:215–234.

    Article  PubMed  CAS  Google Scholar 

  77. Li N, Sioutas C, Cho A et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 2003; 111(4):455–460.

    PubMed  CAS  Google Scholar 

  78. Broker LE, Kruyt FA, Giaccone G. Cell death independent of caspases: A review. Clin Cancer Res 2005; 11(9):3155–3162.

    Article  PubMed  Google Scholar 

  79. Kroemer G, Jaattela M. Lysosomes and autophagy in cell death control. Nat Rev Cancer 2005; 5(11):886–897.

    Article  PubMed  CAS  Google Scholar 

  80. Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: Cell life and death decisions. J Clin Invest 2005; 115(10):2656–2664.

    Article  PubMed  CAS  Google Scholar 

  81. Boyce M, Yuan J. Cellular response to endoplasmic reticulum stress: A matter of life or death. Cell Death Differ 2006; 13(3):363–373.

    Article  PubMed  CAS  Google Scholar 

  82. Zhang K, Kaufman RJ. The unfolded protein response: A stress signaling pathway critical for health and disease. Neurology 2006; 66(2 Suppl 1):S102–109.

    Google Scholar 

  83. Oakes SA, Lin SS, Bassik MC. The control of endoplasmic reticulum-initiated apoptosis by the BCL-2 family of proteins. Curr Mol Med 2006; 6(1):99–109.

    Article  PubMed  CAS  Google Scholar 

  84. Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol 2001; 3(11):E255–263.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Maysinger, D., Lovrić, J. (2007). Quantum Dots and Other Fluorescent Nanoparticles: Quo Vadis in the Cell?. In: Chan, W.C.W. (eds) Bio-Applications of Nanoparticles. Advances in Experimental Medicine and Biology, vol 620. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76713-0_12

Download citation

Publish with us

Policies and ethics