Skip to main content

Environmental Chemistry, Ecotoxicity, and Fate of Lambda-Cyhalothrin

  • Chapter
Reviews of Environmental Contamination and Toxicology

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 195))

Lambda-cyhalothrin is a pyrethroid insecticide. Pyrethroids are synthetic chemical analogues of pyrethrins, which are naturally occurring insecticidal compounds produced in the flowers of chrysanthemums (Chrysanthemum cinerariaefolium). Insecticidal products containing pyrethroids have been widely used to control insect pests in agriculture, public health, and homes and gardens (Amweg and Weston 2005; Oros and Werner 2005). In agriculture, target crops include cotton, cereals, hops, ornamentals, potatoes, and vegetables, with applications made to control aphid, coleopterous, and lepidopterous pests. Pyrethroids are important tools used in public health management where applications are made to control cockroaches, mosquitoes, ticks, and flies, which may act as disease vectors. Residential use of pyrethroid products has increased because of the suspension of organophosphate products containing chlorpyrifos or diazinon (Oros and Werner 2005; Weston et al. 2005).

Lambda-cyhalothrin is the active ingredient (a.i.) in several brand name products: Warrior, Scimitar, Karate, Demand, Icon, and Matador. Annual agricultural use of lambda-cyhalothrin in California has been consistent at approximately 30,000 lbs a.i. per annum from 2000 to 2003 and increased to ~40,000 lbs a.i. per annum between 2004 and 2006 (CDPR 2006). Residues of lambda-cyhalothrin have been detected in irrigation and storm runoff water and in their associated sediments. Residues have been detected in runoff resulting from agricultural, public health, and residential applications. For example, lambda-cyhalothrin was detected in water at 0.11–0.14 μg/L from agricultural watersheds in Stanislaus County, California. Lambda-cyhalothrin residues were detected in sediments obtained from sites sampled in Imperial, Monterey, Stanislaus, and Placer Counties. Residues in sediment ranged from 0.003 to 0.315 μg/g of dry wt (Starner 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali MA, Baugh PJ (2003) Sorption-desorption studies of six pyrethroids and mirex on soils using GC/MS-NICI. Int J Environ Anal Chem 83:923–933.

    Article  Google Scholar 

  • Amweg EL, Weston DP (2005) Use and toxicity of pyrethroid pesticides in the Central Valley, California, USA. Environ Toxicol Chem 24:1300–1301.

    Article  Google Scholar 

  • Amweg EL, Weston DP, Ureda NM (2005) Use and toxicity of pyrethroid pesticides in the Central Valley, California, USA. Environ Toxicol Chem 24:966–972.

    Article  Google Scholar 

  • Amweg EL, Weston DP, You J, Lydy MJ (2006) Pyrethroid insecticides and sediment toxicity in urban creeks from California and Tennessee. Environ Sci Technol 40:1700–1706.

    Article  Google Scholar 

  • Arts GHP, Guijse-Bogdan LL, Belgers JDM, Van Rhenen-Kersten CH, Van Wijngaarden RPA, Roessink I, Maund SJ, Van den Brink PJ, Brock TCM (2006) Ecological impact in ditch mesocosms of simulated spray drift from a crop protection program for potatoes. Integr Environ Assess Manag 2:105–125.

    Article  Google Scholar 

  • Bennett ER, Moore MT, Cooper CM, Smith S, Shields FD, Drouillard KG, Schulz R (2005) Vegetated agricultural drainage ditches for the mitigation of pyrethroid-associated runoff. Environ Toxicol Chem 24:2121–2127.

    Article  Google Scholar 

  • Bondarenko S, Putt A, Kavanaugh S, Poletika N, Gan JY (2006) Time dependence of phase distribution of pyrethroid insecticides in sediment. Environ Toxicol Chem 25:3148–3154.

    Article  Google Scholar 

  • Bouldin JL, Farris JL, Moore MT Jr, Stephens WW, Cooper CM (2005) Evaluated fate and effects of atrazine and lambda-cyhalothrin in vegetated and unvegetated microcosms. Environ Toxicol 20:487–498.

    Article  Google Scholar 

  • Bouldin JL, Farris JL, Moore MT, Smith JS, Cooper CM (2006) Hydroponic uptake of atrazine and lambda-cyhalothrin in Juncus effusus and Ludwigia peploides. Chemosphere 65:1049–1057.

    Article  Google Scholar 

  • Bradbury SP, Coats JR (1989) Toxicokinetics and toxicodynamics of pyrethroid insecticides in fish. Environ Toxicol Chem 8:373–380.

    Article  Google Scholar 

  • Burken JG, Schnoor JL (1997) Uptake and metabolism of atrazine by poplar trees. Environ Sci Technol 31:1399–1406.

    Article  Google Scholar 

  • Burr SA, Ray DE (2004) Structure-activity and interaction effects of 14 different pyrethroids on voltage-gated chloride ion channels. Toxicol Sci 77:341–346.

    Article  Google Scholar 

  • Cavas T, Ergene-Gozukara S (2003) Evaluation of the genotoxic potential of lambda-cyhalothrin using nuclear and nucleolar biomarkers on fish cells. Mutat Res/Genet Toxicol Environ Mutagen 534:93–99.

    Article  Google Scholar 

  • CDPR (2006) California Department of Pesticide Regulation Pesticide Use Database.

    Google Scholar 

  • CDPR (2007) Pesticide chemical database.

    Google Scholar 

  • Cleugh ES, Milner DJ (1994) Isomerization process. http://wwwpatentstormus/patents/5334744- descriptionhtml.

  • Cycon M, Piotrowska-Seget Z, Kaczynska A, Kozdroj J (2006) Microbiological characteristics of a sandy loam soil exposed to tebuconazole and lambda-cyhalothrin under laboratory conditions. Ecotoxicology 15:639–646.

    Article  Google Scholar 

  • European-Commission (2001) Review report for the active substance lambda-cyhalothrin. 7572/VI/97-final. 25 January 2001. http://ec.europa.eu/food/plant/protection/evaluation/existactive/list1–24_en.pdf.

  • Farmer D, Hill IR, Maund SJ (1995) A comparison of the fate and effects of two pyrethroid insecticides (lambda-cyhalothrin and cypermethrin) in pond mesocosms. Ecotoxicology 4:219–244.

    Article  Google Scholar 

  • Fernandez-Alvarez M, Sanchez-Prado L, Lores M, Llompart M, Garcia-Jares C, Cela R (2007) Alternative sample preparation method for photochemical studies based on solid phase microextraction: synthetic pyrethroid photochemistry. J Chromatogr A Adv Sample Prep 1152:156–167.

    Article  Google Scholar 

  • Forster B, Garcia M, Francimari O, Rombke J (2006) Effects of carbendazim and lambda-cyhalothrin on soil invertebrates and leaf litter decomposition in semi-field and field tests under tropical conditions (Amazonia, Brazil). Eur J Soil Biol 42:S171–S179.

    Article  Google Scholar 

  • Frampton GK, Jansch S, Scott-Fordsmand JJ, Rombke J, Van den Brink PJ (2006) Effects of pesticides on soil invertebrates in laboratory studies: a review and analysis using species sensitivity distributions. Environ Toxicol Chem 25:2480–2489.

    Article  Google Scholar 

  • Gan J, Yang W, Hunter W, Bondarenko S, Spurlock F (2006) Bioavailability of pyrethroids in surface aquatic systems. http://wwwcdprcagov/docs/sw/presentations/JGan_pyrethroids 101105pdf.

  • Gu BG, Wang HM, Chen WL, Cai DJ, Shan ZJ (2007) Risk assessment of lambda-cyhalothrin on aquatic organisms in paddy field in China. Regul Toxicol Pharmacol 48:69–74.

    Article  Google Scholar 

  • Gupta S, Handa SK, Sharma KK (1998) A new spray reagent for the detection of synthetic pyrethroids containing a nitrile group on thin-layer plates. Talanta 45:1111–1114.

    Article  Google Scholar 

  • Hadfield ST, Sadler JK, Bolygo E, Hill S, Hill IR (1993) Pyrethroid residues in sediment and water samples from mesocosm and farm pond studies of simulated accidental aquatic exposure. Pestic Sci 38:283–294.

    Article  Google Scholar 

  • Hamer MJ, Goggin UM, Muller K, Maund SJ (1999) Bioavailability of lambda-cyhalothrin to Chironomus riparius in sediment-water and water-only systems. Aquat Ecosys Health Manag 2:403–412.

    Google Scholar 

  • Hand LH, Kuet SF, Lane MCG, Maund SJ, Warinton JS, Hill IR (2001) Influences of aquatic plants on the fate of the pyrethroid insecticide lambda-cyhalothrin in aquatic environments. Environ Toxicol Chem 20:1740–1745.

    Article  Google Scholar 

  • Heckmann LH, Friberg N (2005) Macroinvertebrate community response to pulse exposure with the insecticide lambda-cyhalothrin using in-stream mesocosms. Environ Toxicol Chem 24:582–590.

    Article  Google Scholar 

  • Henderson KL, Belden JB, Coats JR (2007) Mass balance of metolachlor in a grassed phytoremediation system. Environ Sci Technol 41:4084–4089.

    Article  Google Scholar 

  • Hill BD, Inaba DJ (1991) Dissipation of lambda-cyhalothrin on fallow vs. cropped soil. J Agric Food Chem 39:2282–2284.

    Article  Google Scholar 

  • Laabs V, Amelung W, Pinto A, Altstaedt A, Zech W (2000) Leaching and degradation of corn and soybean pesticides in an Oxisol of the Brazilian Cerrados. Chemosphere 41:1441–1449.

    Article  Google Scholar 

  • Laskowski DA (2002) Physical and chemical properties of pyrethroids. Rev Environ Contam Toxicol 174:49–170.

    Google Scholar 

  • Lawler SP, Dritz DA, Godfrey LD (2003) Effects of the agricultural insecticide lambda-cyhalothrin (Warrior ()) on mosquitofish (Gambusia affinis). J Am Mosq Control Assoc 19:430–432.

    Google Scholar 

  • Lawler SP, Dritz DA, Christiansen JA, Cornel AJ (2007) Effects of lambda-cyhalothrin on mosquito larvae and predatory aquatic insects. Pest Manag Sci 63:234–240.

    Article  Google Scholar 

  • Leistra M, Zweers AJ, Warinton JS, Crum SJ, Hand LH, Beltman WH, Maund SJ (2004) Fate of the insecticide lambda-cyhalothrin in ditch enclosures differing in vegetation density. Pest Manag Sci 60:75–84.

    Article  Google Scholar 

  • Maund SJ, Hamer MJ, Warinton JS, Kedwards TJ (1998) Aquatic ecotoxicology of the pyrethroid insecticide lambda-cyhalothrin: considerations for higher-tier aquatic risk assessment. Pestic Sci 54:408–417.

    Article  Google Scholar 

  • Mertens J, Vervaeke P, Meers E, Tack FMG (2006) Seasonal changes of metals in willow (Salix sp.) stands for phytoremediation on dredged sediment. Environ Sci Technol 40:1962–1968.

    Article  Google Scholar 

  • Milam CD, Bouldin JL, Farris JL, Schulz R, Moore MT, Bennett ER, Cooper CM, Smith S (2004) Evaluating acute toxicity of methyl parathion application in constructed wetland mesocosms. Environ Toxicol 19:471–479.

    Article  Google Scholar 

  • Montes-Bayon M, Yanes EG, Ponce de Leon C, Jayasimhulu K, Stalcup A, Shann J, Caruso JA (2002) Initial studies of selenium speciation in Brassica juncea by LC with ICPMS and ES-MS detection: an approach for phytoremediation studies. Anal Chem 74:107–113.

    Article  Google Scholar 

  • Moore MT, Bennett ER, Cooper CM, Smith S, Shields FD, Milam CD, Farris JL (2001) Transport and fate of atrazine and lambda-cyhalothrin in an agricultural drainage ditch in the Mississippi Delta, USA. Agric Ecosyst Environ 87:309–314.

    Article  Google Scholar 

  • Oros DR, Werner I (2005) Pyrethroid Insecticides: An Analysis of Use Patterns, Distributions, Potential Toxicity and Fate in the Sacramento-San Joaquin Delta and Central Valley. White Paper for the Interagency Ecological Program. SFEI Contribution 415. San Francisco Estuary Institute, Oakland, CA.

    Google Scholar 

  • Oudo H, Hansen HC (2002) Sorption of lambda-cyhalothrin, cypermethrin, deltamethrin and fenvalerate to quartz, corundum, kaolinite and montmorillonite. Chemosphere 49:1285–1294.

    Article  Google Scholar 

  • PAN (2007) PAN Pesticides Database, Chemicals. http://www.pesticideinfo.org/List_Chemicals.jsp. Accessed July 20, 2007.

  • Reichenberger S, Amelung W, Laabs V, Pinto A, Totsche KU, Zech W (2002) Pesticide displacement along preferential flow pathways in a Brazilian Oxisol. Geoderma 110:63–86.

    Article  Google Scholar 

  • Robson MJ and Crosby J (1984) Insecticidal product and preparation thereof. European Patent Office. Patent Number EU 106469. UK.

    Google Scholar 

  • Roessink I, Arts GHP, Belgers JDM, Bransen F, Maund SJ, Brock TCM (2005) Effects of lambda-cyhalothrin in two ditch microcosm systems of different trophic status. Environ Toxicol Chem 24:1684–1696.

    Article  Google Scholar 

  • Ruzo LO, Krishnamurthy VV, Casida JE, Gohre K (1987) Pyrethroid photochemistry: influence of the chloro(trifluoromethyl) vinyl substituent in cyhalothrin. J Agric Food Chem 35:879–883.

    Article  Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (1993) Environmental Organic Chemistry. Wiley, New York.

    Google Scholar 

  • Shafer TJ, Meyer DA (2004) Effects of pyrethroids on voltage-sensitive calcium channels: a critical evaluation of strengths, weaknesses, data needs, and relationship to assessment of cumulative neurotoxicity. Toxicol Appl Pharmacol 196:303–318.

    Article  Google Scholar 

  • Siciliano SD, Goldie H, Germida JJ (1998) Enzymatic activity in root exudates of Dahurian wild rye (Elymus dauricus) that degrades 2-chlorobenzoic acid. J Agric Food Chem 46:5–7.

    Article  Google Scholar 

  • Spurlock F (2006) Synthetic pyrethroids and California surface water: use patterns, properties, and unique aspects. http://wwwcdprcagov/docs/sw/swposters/spurlock_acs06pdf.

  • Starner K (2007) Data queried from the Department of Pesticide Regulation Surface Water Monitoring Database.

    Google Scholar 

  • Syngenta (2007) KARATE. http://wwwsyngentacom/en/products_services/karate_pageaspx.

  • Tariq MY, Afzal S, Hussain I (2006) Degradation and persistence of cotton pesticides in sandy loam soils from Punjab, Pakistan. Environ Res 100:184–196.

    Article  Google Scholar 

  • Tomlin CDS (ed) (2000) The Pesticide Manual, 12th Ed. British Crop Protection Council, Farnham, UK.

    Google Scholar 

  • USDA (2007) USDA-ARS Pesticide Properties Database: http://www.ars.usda.gov/Services/docs.htm?docid=14199. Accessed July 20, 2007.

  • USEPA (2007) ECOTOX database. http://cfpubepagov/ecotox/quick_queryhtm.

  • Van Wijngaarden RPA, Cuppen JGM, Arts GHP, Crum SJH, van den Hoorn MW, Van den Brink PJ, Brock TCM (2004) Aquatic risk assessment of a realistic exposure to pesticides used in bulb crops: a microcosm study. Environ Toxicol Chem 23:1479–1498.

    Article  Google Scholar 

  • Van Wijngaarden RPA, Brock TCM, Van den Brink PJ (2005) Threshold levels for effects of insecticides in freshwater ecosystems: a review. Ecotoxicology 14:355–380.

    Article  Google Scholar 

  • Wang S, Kimber SWL, Kennedy IR (1997) The dissipation of lambda-cyhalothrin from cotton production systems. J Environ Sci Health B B32:335–352.

    Article  Google Scholar 

  • Wang W, Cai DJ, Shan ZJ, Chen WL, Poletika N, Gao XW (2007) Comparison of the acute toxicity for gamma-cyhalothrin and lambda-cyhalothrin to zebra fish and shrimp. Regul Toxicol Pharmacol 47:184–188.

    Article  Google Scholar 

  • Wendt-Rasch L, Van den Brink PJ, Crum SJH, Woin P (2004) The effects of a pesticide mixture on aquatic ecosystems differing in trophic status: responses of the macrophyte Myriophyllum spicatum and the periphytic algal community. Ecotoxicol Environ Saf 57:383–398.

    Article  Google Scholar 

  • Weston DP, You JC, Lydy MJ (2004) Distribution and toxicity of sediment-associated pesticides in agriculture-dominated water bodies of California’s Central Valley. Environ Sci Technol 38:2752–2759.

    Article  Google Scholar 

  • Weston DP, Holmes RW, You J, Lydy MJ (2005) Aquatic toxicity due to residential use of pyrethroid insecticides. Environ Sci Technol 39:9778–9784.

    Article  Google Scholar 

  • Wild E, Dent J, Thomas GO, Jones KC (2005) Direct observation of organic contaminant uptake, storage, and metabolism within plant roots. Environ Sci Technol 39:3695–3702.

    Article  Google Scholar 

  • Zhou JL, Rowland S, Mantoura RFC (1995) Partition of synthetic pyrethroid insecticides between dissolved and particulate phases. Water Res 29:1023–1031.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

He, LM., Troiano, J., Wang, A., Goh, K. (2008). Environmental Chemistry, Ecotoxicity, and Fate of Lambda-Cyhalothrin. In: Whitacre, D.M. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 195. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77030-7_3

Download citation

Publish with us

Policies and ethics