Skip to main content

Modifying Anthocyanin Production in Flowers

  • Chapter
  • First Online:
Anthocyanins

Abstract

Anthocyanin biosynthesis is a key aspect of flower development for many angiosperms, providing one of the major influences on the choice of potential pollinators. In some species evolution has resulted in complex anthocyanin structures that provide bright flower colours, whereas in other species sophisticated combinations of pigment patterning and floral shape have developed to attract pollinators. There is now a good understanding of the molecular biology of both the genes encoding the biosynthetic enzymes for anthocyanins and copigments, and the temporal and spatial regulation of anthocyanin production. The availability of genes relating to anthocyanin biosynthesis has allowed for the molecular breeding of flower colour in several ornamental species. Since the first publication detailing the generation of new flower colours using recombinant DNA techniques (approximately 20 years ago) there have been many notable advances in the gene technologies available for genetic modification of anthocyanin biosynthesis. Transgenic carnation cultivars that produce delphinidin-derived anthocyanins and that have novel mauve-violet colours are now available commercially, and it is anticipated that these will be followed to market by many more genetically modified ornamental crops during the next 10 to 15 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharoni, A., De Vos, C.H., Wein, M., Sun, Z., Greco, R., Kroon, A., Mol, J.N. and O’Connell, A.P. (2001) The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J. 28, 319–332.

    PubMed  CAS  Google Scholar 

  • Aida, R., Kishimoto, S., Tanaka, Y. and Shibata, M. (2000a) Modification of flower colour in torenia (Torenia fournieri Lind.) by genetic transformation. Plant Sci. 153, 33–42.

    CAS  Google Scholar 

  • Aida, R., Yoshida, K., Kondo, T., Kishimoto, S. and Shibata, M. (2000b) Copigmnetation gives bluer flowers on transgenic torenia plants with the antisense dihydroflavonol-4-reductase gene. Plant Sci. 160, 49–56.

    CAS  Google Scholar 

  • Andersen, Ø.M. and Jordheim, M. (2006) The anthocyanins. In: Anderson, Ø.M. and Markham, K.R. (eds) Flavonoids: Chemistry, Biochemistry, and Applications, CRC Press, Boca Raton, Florida, USA, pp. 471–553.

    Google Scholar 

  • Angenent, G.C., Franken, J., Busscher, M., Weiss, D. and van Tunen, A.J. (1994) Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J. 5, 33–44.

    PubMed  CAS  Google Scholar 

  • Arisumi, K., Sakata, Y. and Takeshita, S. (1990) The pigment constitution of R. griersonianum. Am. Rhod. Soc. J. 44, 15–17.

    Google Scholar 

  • Asen, S., Stewart, R.N and Norris, K.H. (1971) Co-pigmentation effect of quercetin glycosides on absorption characteristics of cyanidin glycosides and color of Red Wing azalea. Phytochemistry 10, 171–175.

    CAS  Google Scholar 

  • Bae, R.N., Kim, K.W., Kim, T.C. and Lee, S.K. (2006) Anatomical observations of anthocyanin rich cells in apple skins. HortScience 41, 733–736.

    CAS  Google Scholar 

  • Bey, M., Stuber, K., Fellenberg, K., Schwarz-Sommer, Z., Sommer, H., Saedler, H. and Zachgo, S. (2004) Characterization of antirrhinum petal development and identification of target genes of the class B MADS box gene DEFICIENS. Plant Cell 16, 3197–3215.

    PubMed  Google Scholar 

  • Boase, M.R., Bradley, J.M. and Borst, N.K. (1998) Genetic transformation mediated by Agrobacterium tumefaciens of florists’ chrysanthemum (Dendranthema × grandiflorum) cultivar “Peach Margaret”. In Vitro Cell. Dev. Biol. Plant 34, 46–51.

    CAS  Google Scholar 

  • Boase, M.R., Lill, T.R., Rains, R.S., Lewis, D.H., Schwinn, K.E., King, I.S. and Davies, K.M. (2006) Impact of the environment on phenotypes of petunia plants carrying transgenes for flavonoid regulatory factors or the ROLC protein. In: Mercer, C.F. (ed.) 13th Australasian Plant Breeding Conference Proceedings, CD-ROM IBSN 978-0-86476-167-8. Grains Research & Development Corporation, New Zealand.

    Google Scholar 

  • Bohm, B.A. (1998) Introduction to Flavonoids. Harwood Academic Publishers, Amsterdam, The Netherlands.

    Google Scholar 

  • Borevitz, J.O., Xia, Y., Blount, J., Dixon, R.A. and Lamb, C. (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12, 2383–2394.

    PubMed  CAS  Google Scholar 

  • Bovy, A., de Vos, R., Kemper, M., Schijlen, E., Pertejo, M.A., Muir, S., Collins, G., Robinson, S., Verhoeyen, M., Hughes, S., Santos-Buelga, C. and van Tunen, A. (2002) High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell 14, 2509–2526.

    PubMed  CAS  Google Scholar 

  • Bradley, J.M., Davies, K.M., Deroles, S.C., Bloor, S.J. and Lewis D.H. (1998) The maize Lc regulatory gene up-regulates the flavonoid biosynthetic pathway of Petunia. Plant J. 13, 381–392.

    CAS  Google Scholar 

  • Bradley, J.M., Deroles, S.C., Boase, M.R., Bloor, S., Swinny, E. and Davies, K.M. (1999) Variation in the ability of the maize Lc regulatory gene to upregulate flavonoid biosynthesis in heterologous systems. Plant Sci. 140, 31–39.

    CAS  Google Scholar 

  • Bradley, J.M., Rains, R.S., Manson, J.L. and Davies, K.M. (2000) Flower pattern stability in genetically modified lisianthus (Eustoma grandiflorum) under commercial growing conditions. New Zealand J. Crop Hort. Sci. 28, 175–184.

    CAS  Google Scholar 

  • Brouillard, R. and Dangles, O. (1993) Flavonoids and flower colour. In: Harborne, J.B. (ed.)The Flavonoids: Advances in Research Since 1986. Chapman & Hall, London, UK, pp. 565–587.

    Google Scholar 

  • Brugliera, F., Holton, T.A., Stevenson, T.W., Farcy, E., Lu, C.Y. and Cornish, E.C. (1994) Isolation and characterization of a cDNA clone corresponding to the Rt locus of Petunia hybrida. Plant J. 5, 81–92.

    PubMed  CAS  Google Scholar 

  • Brugliera, F., Barri-Rewell, G., Holton, T.A. and Mason, J.G. (1999) Isolation and characterization of a flavonoid 3’-hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida. Plant J. 19, 441–451.

    PubMed  CAS  Google Scholar 

  • Burr, F.A., Burr, B., Scheffler, B.E., Blewitt, M., Wienand, U. and Matz, E.C. (1996) The maize repressor-like gene intensifier1 shares homology with the R1/B1 multigene family of transcription factors and exhibits missplicing. Plant Cell 8, 1249–1259.

    PubMed  CAS  Google Scholar 

  • Carey, C.C., Strahle, J.T., Selinger, D.A. and Chandler, V.L. (2004) Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana. Plant Cell 16, 450–464.

    PubMed  CAS  Google Scholar 

  • Chen, B., Wang, X., Hu, Y., Wang, Y. and Lin, Z. (2004) Ectopic expression of a c1-I allele from maize inhibits pigment formation in the flower of transgenic tobacco. Mol. Biotech. 26, 187–192.

    Google Scholar 

  • Chittka, L., Shmida, A., Troje, N. and Menzel, R. (1994). Ultraviolet as a component of flower reflections, and the colour perception of Hymenoptera. Vision Res. 34, 1489–1508.

    PubMed  CAS  Google Scholar 

  • Collette, V.E., Jameson, P.E., Schwinn, K.E., Umaharan, P. and Davies, K.M. (2004) Temporal and spatial expression of flavonoid biosynthetic genes in flowers of Anthurium andraeanum. Physiol. Plant. 122, 297–304.

    CAS  Google Scholar 

  • Courtney-Gutterson, N., Napoli, C., Lemieuz, C., Morgan, A., Firoozabady, E. and Robinson, K.E.P. (1994) Modification of flower color in florist’s chrysanthemum: production of a white-flowering variety through molecular-genetics. Biotechnology 12, 268–271.

    PubMed  CAS  Google Scholar 

  • Cuttriss, A. and Pogson, B. (2004) Carotenoids. In: Davies, K. (ed.) Plant Pigments and their Manipulation. Blackwell Publishing, Oxford, UK, pp. 57–91.

    Google Scholar 

  • Damiani, F., Paolocci, F., Cluster, P.D., Arcioni, S., Tanner, G.J., Joseph, R.J., Li, Y.G., de Majnik, J. and Larkin, P.J. (1999) The maize transcription factor Sn alters proanthocyanidin synthesis in transgenic Lotus corniculatus plants. Aust. J. Plant Physiol. 26, 159–169.

    CAS  Google Scholar 

  • Davies, K.M. (2004) Important rare plant pigments. In: Davies, K.M. (ed.) Plant Pigments and their Manipulation. Annual Plant Reviews, Blackwell Press, UK, pp. 214–247.

    Google Scholar 

  • Davies, K.M. and Schwinn, K.E. (1997) Flower colour. In: Geneve, R.L., Preece, J.E. and Merkle, S.A. (eds) Biotechnology of Ornamental Plants. CAB International, Wallingford, UK, pp. 259–294.

    Google Scholar 

  • Davies, K.M. and Schwinn, K.E. (2003) Transcriptional regulation of secondary metabolism. Funct. Plant Biol. 30, 913–925.

    CAS  Google Scholar 

  • Davies, K.M. and Schwinn, K.E. (2006) Molecular biology and biotechnology of flavonoid biosynthesis. In: Anderson, Ø.M. and Markham, K.R. (eds) Flavonoids: Chemistry, Biochemistry, and Applications, CRC Press, Boca Raton, Florida, USA, pp. 143–218.

    Google Scholar 

  • Davies, K.M., Bloor, S.J., Spiller, G.B. and Deroles, S.C. (1998) Production of yellow colour in flowers: redirection of flavonoid biosynthesis in Petunia. Plant J. 13, 259–266.

    CAS  Google Scholar 

  • Davies, K.M., Schwinn, K.E., Deroles, S.C., Manson, D.G., Lewis, D.H., Bloor, S.J. and Bradley, J.M. (2003) Enhancing anthocyanin production by altering competition for substrate between flavonol synthase and dihydroflavonol 4-reductase. Euphytica 131, 259–268.

    CAS  Google Scholar 

  • Della Vedova, C.B., Lorbiecke, R., Kirsch, H., Schulte, M.B., Scheets, K., Borchert, L.M., Scheffler, B.E., Wienand, U., Cone, K.C. and Birchler, J.A. (2005) The dominant inhibitory chalcone synthase allele C2-Idf (inhibitor diffuse) from Zea mays (L.) acts via an endogenous RNA silencing mechanism. Genetics 170, 1989–2002.

    PubMed  CAS  Google Scholar 

  • De Jaeger, G., Buys, E., Eeckhout, D., De Wilde, C., Jacobs, A., Kapila, J., Angenon, G., Van Montagu, M., Gerats, T. and Depicker, A. (1999) High level accumulation of single-chain variable fragments in the cytosol of transgenic Petunia hybrida. Eur. J. Biochem. 259, 426–434.

    PubMed  Google Scholar 

  • de Majnik, J., Weinman, J.J., Djordjevic, M.A., Rolfe, B.G., Tanner, G.J., Joseph, R.G. and Larkin, P.J. (2000) Anthocyanin regulatory gene expression in transgenic white clover can result in an altered pattern of pigmentation. Aust. J. Plant Physiol. 27, 659–667.

    Google Scholar 

  • Deroles, S.C., Bradley, J.M., Schwinn, K.E., Markham, K.R., Bloor, S.J., Manson, D.G. and Davies, K.M. (1998) An antisense chalcone synthase gene leads to novel flower patterns in lisianthus (Eustoma grandiflorum). Mol. Breed. 4, 59–66.

    CAS  Google Scholar 

  • de Vetten, N., Quattrocchio, F., Mol, J. and Koes, R. (1997) The an11locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Dev. 11, 1422–1434.

    PubMed  Google Scholar 

  • de Vetten, N., ter Horst, J., van Schaik, H.-P., de Boer, A., Mol, J. and Koes, R. (1999) A cytochrome b5 is required for full activity of flavonoid 3’,5’-hydroxylase, a cytochrome P450 involved in the formation of blue flower colours. Proc. Natl. Acad. Sci. USA 96, 778–783.

    PubMed  Google Scholar 

  • Elomaa, P., Honkanen, J., Puska, R., Seppanen, P., Helariutta, Y., Mehto, M., Kotilainen, M., Nevalainen, L. and Teeri, T.H. (1993) Agrobacterium-mediated transfer of antisense chalcone synthase cDNA to Gerbera hybrida inhibits flower pigmentation. Biotechnology 11, 508–511.

    CAS  Google Scholar 

  • Elomaa, P., Uimari, A., Mehto, M., Albert, V.A., Laitinen, R.A.E. and Teeri, T.H. (2003) Activation of anthocyanin biosynthesis in Gerbera hybrida (Asteraceae) suggests conserved protein-protein and protein-promoter interactions between the anciently diverged monocots and eudicots. Plant Physiol. 133, 1831–1842.

    PubMed  CAS  Google Scholar 

  • Farzad, M., Griesbach, R. and Weiss, M.R. (2002) Floral color change in Viola cornuta L. (Violaceae): a model system to study regulation of anthocyanin production. Plant Sci. 162, 225–231.

    CAS  Google Scholar 

  • Farzad, M., Griesbach, R., Hammond, J., Weiss, M.R. and Elmendorf, H.G. (2003) Differential expression of three key anthocyanin biosynthetic genes in a color-changing flower, Viola cornuta cv. Yesterday, Today and Tomorrow. Plant Sci. 165, 1333–1342.

    CAS  Google Scholar 

  • Ferrario, S., Immink, R.G., Shchennikova, A., Busscher-Lange, J. and Angenent, G.C. (2003) The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell 15, 914–925.

    PubMed  CAS  Google Scholar 

  • Firoozabady, E., Moy, Y., Courtney-Gutterson, N. and Robinson, K. (1994) Regeneration of transgenic rose (Rosa hybrida) plants from embryogenic tissue. Biotechnology 12, 609–613.

    CAS  Google Scholar 

  • Fischer, R., Budde, I. and Hain, R. (1997) Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco. Plant J. 11, 489–498.

    CAS  Google Scholar 

  • Fischer, T.C., Halbwirth, H., Meisel, B., Stich, K. and Forkmann, G. (2003) Molecular cloning, substrate specificity of the functionally expressed dihydroflavonol 4-reductases from Malus domestica and Pyrus communis cultivars and the consequences for flavonoid metabolism. Arch. Biochem. Biophys. 412, 223–230.

    PubMed  CAS  Google Scholar 

  • Forkmann, G. and Heller, W. (1999) Biosynthesis of flavonoids. In: Sankawa, U. (ed.) Comprehensive Natural Products Chemistry Volume 1: Polyketides and Other Secondary Metabolites Including Fatty Acids and their Derivatives. Elsevier, UK, pp. 713–748.

    Google Scholar 

  • Fraser, P.D. and Bramley, P.M. (2004) The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 43, 228–265.

    PubMed  CAS  Google Scholar 

  • Fujiwara, H., Tanaka, Y., Yonekura-Sakakibara, K., Fukuchi-Mizutani, M., Nakao, M., Fukui, Y., Yamaguchi, M., Ashikari, T. and Kusumi, T. (1998) cDNA cloning, gene expression and subcellular localization of anthocyanin 5-aromatic acyltransferase from Gentiana triflora. Plant J. 16, 421–431.

    PubMed  CAS  Google Scholar 

  • Fukada-Tanaka, S., Inagaki, Y., Yamaguchi, T., Saito, N. and Iida, S. (2000) Colour-enhancing protein in blue petals. Nature 407, 581.

    PubMed  CAS  Google Scholar 

  • Fukuchi-Mizutani, M., Okuhara, H., Fukui, Y., Nakao, M., Katsumoto, Y., Yonekura-Sakakibara, K., Kusumi, T., Hase, T. and Tanaka, Y. (2003) Biochemical and molecular characterization of a novel UDP-glucose:anthocyanin 3’-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian. Plant Physiol. 132, 1652–1663.

    PubMed  CAS  Google Scholar 

  • Fukui, Y., Kusumi, T., Matsuda, K., Iwashita, T. and Nomoto, K. (2002) Structure of rosacyanin B, a novel pigment from the petals of Rosa hybrida. Tetrahedron Lett. 43, 2637–2639.

    CAS  Google Scholar 

  • Fukui, Y., Tanaka, Y., Kusumi, T., Iwashita, T. and Nomoto, K. (2003) A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3’,5’-hydroxylase gene. Phytochemistry 63, 15–23.

    PubMed  CAS  Google Scholar 

  • Fukusaki, E., Kawasaki, K., Kajiyama, S., An, C.I., Suzuki, K., Tanaka, Y., Kobayashi, A. (2004) Flower color modulations of Torenia hybrida by downregulation of chalcone synthase genes with RNA interference. J. Biotech. 111, 229–240.

    CAS  Google Scholar 

  • Gebhardt, Y., Witte, S., Forkmann, G., Lukačin, R., Marten, U. and Martens, S. (2005) Molecular evolution of flavonoid dioxygenases in the family Apiaceae. Phytochemistry 66, 1273–1284.

    PubMed  CAS  Google Scholar 

  • Goff, S.A., Cone, K.C. and Chandler, V.L. (1992) Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins. Genes Dev. 6, 864–875.

    PubMed  CAS  Google Scholar 

  • Goldsbrough, A., Tong, Y. and Yoder, J.I. (1996). Lc as a non-destructive visual reporter and transposition excision marker gene for tomato. Plant J. 9, 927–933.

    CAS  Google Scholar 

  • Gong, Z.Z., Yamagishi, E., Yamazaki, M. and Saito, K. (1999) A constitutively expressed Myc-like gene involved in anthocyanin biosynthesis from Perilla frutescens: molecular characterization, heterologous expression in transgenic plants and transactivation in yeast cells. Plant Mol. Biol. 41, 33–44.

    PubMed  CAS  Google Scholar 

  • Gonnet, J.F. (2003) Origin of the color of Cv. rhapsody in blue rose and some other so-called “blue” roses. J. Agric. Food. Chem. 51, 4990–4994.

    PubMed  CAS  Google Scholar 

  • Goodrich, J., Carpenter, R. and Coen, E.S. (1992) A common gene regulates pigmentation pattern in diverse plant species. Cell 68, 955–964.

    PubMed  CAS  Google Scholar 

  • Gorton, H.L. and Vogelmann, T.C. (1996) Effects of epidermal cell shape and pigmentation on optical properties of Antirrhinum petals at visible and ultraviolet wavelengths. Plant Physiol 112, 879–888.

    PubMed  CAS  Google Scholar 

  • Goto, T. and Kondo, T. (1991) Structure and molecular stacking of anthocyanins – flower color variation. Angew. Chem. Int. Ed. Eng. 30, 17–33.

    Google Scholar 

  • Goto, T., Takase, S. and Kondo, T. (1978) PMR spectra of natural acylated anthocyanins. Determination of stereostructure of awobanin, shisonin and violanin, Tetrahedron Lett. 2413–2416.

    Google Scholar 

  • Griesbach, R.J. (1993) Characterization of the flavonoids from Petunia xhybrida flowers expressing the A1 gene of Zea mays. HortScience 28, 659–660.

    CAS  Google Scholar 

  • Grotewold, E. (2006) The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 57, 761–780.

    CAS  Google Scholar 

  • Gutterson, N. (1995) Anthocyanin biosynthetic genes and their application to flower colour modification through sense suppression. HortScience 30, 964–966.

    CAS  Google Scholar 

  • Halbwirth, H. and Stich, K. (2006) An NADPH and FAD dependent enzyme catalyzes hydroxylation of flavonoids in position 8. Phytochemistry 67, 1080–1087.

    PubMed  CAS  Google Scholar 

  • Halbwirth, H., Martens, S., Wienand, U., Forkmann, G. and Stich, K. (2003) Biochemical formation of anthocyanins in silk tissue of Zea mays. Plant Sci. 164, 489–495.

    CAS  Google Scholar 

  • Heller, W. and Forkmann, G. (1994) Biosynthesis of flavonoids. In: Harborne, J.B. (ed.) The Flavonoids: Advances in research since 1986. Chapman & Hall, London, pp. 499–535.

    Google Scholar 

  • Hiratsu, K., Matsui, K., Koyama, T. and Ohme-Takagi, M. (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J. 34, 733–739.

    PubMed  CAS  Google Scholar 

  • Holton, T.A., Brugliera, F., Lester, D.R., Tanaka, Y., Hyland, C.D., Menting, J.G.T., Lu, C.-Y., Farcy, E., Stevenson, T.W. and Cornish, E.C. (1993a) Cloning and expression of cytochrome P450 genes controlling flower colour. Nature 366, 276–279.

    CAS  Google Scholar 

  • Holton, T.A., Cornish, E.C. and Tanaka, Y. (1993b) Cloning and expression of flavonol synthase from Petunia hybrida. Plant J. 4, 1003–1010.

    CAS  Google Scholar 

  • Ibrahim, R.K. and Muzac, I. (2000) The methyltransferase gene superfamily: a tree with multiple branches. In: Romeo, J.T., Ibrahim, R., Varin, L. and De Luca, V. (eds) Evolution of Metabolic Pathways. Elsevier Science Ltd, Oxford, UK, pp. 349–384.

    Google Scholar 

  • Jin, H., Cominelli, E., Bailey, P., Parr, A., Mehrtens, F., Jones, J., Tonelli, C., Weisshaar, B. and Martin, C. (2000) Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis.EMBO J. 19, 6150–6161.

    PubMed  CAS  Google Scholar 

  • Johnson, E.T., Yi, H., Shin, B., Oh, B.-J., Cheong, H. and Choi, G. (1999) Cymbidium hybrida dihydroflavonol 4-reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin-type anthocyanins. Plant J. 19, 81–85.

    PubMed  CAS  Google Scholar 

  • Jorgensen, R. (1995) Cosuppression, flower color patterns, and metastable gene expression states. Science 268, 686–691.

    PubMed  CAS  Google Scholar 

  • Jorgensen, R.A., Que, Q.D. and Napoli, C.A. (2002) Maternally-controlled ovule abortion results from cosuppression of dihydroflavonol-4-reductase or flavonoid-3’,5’-hydroxylase genes in Petunia hybrida. Funct. Plant Biol. 29, 1501–1506.

    CAS  Google Scholar 

  • Joung, J.Y., Kasthuri, G.M., Park J.Y., Kang, W.J., Kim, H.S., Yoon, B.S., Joung, H. and Jeon, J.H. (2003) An overexpression of chalcone reductase of Pueraria montana var. lobata alters biosynthesis of anthocyanin and 5’-deoxyflavonoids in transgenic tobacco. Biochem. Biophys. Res. Comm. 303, 326–331.

    PubMed  CAS  Google Scholar 

  • Koseki, M., Goto, K., Masuta, C. and Kanazawa, A. (2005) The star-type color pattern in Petunia hybrida “Red Star” flowers is induced by sequence-specific degradation of chalcone synthase RNA. Plant Cell Physiol. 46, 1879–1883.

    PubMed  CAS  Google Scholar 

  • Kroon, J., Souer, E., de Graaff, A., Xue, Y., Mol, J. and Koes, R. (1994) Cloning and structural analysis of the anthocyanin pigmentation locus Rt of Petunia hybrida: characterization of insertion sequences in two mutant alleles. Plant J. 5, 69–80.

    PubMed  CAS  Google Scholar 

  • Latunde-Dada, A.O., Cabello-Hurtado, F., Czittrich, N., Didierjean, L., Schopfer, C., Hertkorn, N., Werck-Reichhart, D. and Ebel, J. (2001) Flavonoid 6-hydroxylase from soybean (Glycine max L.), a novel plant P-450 monooxygenase. J. Biol. Chem. 276, 1688–1695.

    PubMed  CAS  Google Scholar 

  • Li, S.J., Deng, X.M., Mao, H.Z. and Hong, Y. (2005) Enhanced anthocyanin synthesis in foliage plant Caladium bicolor. Plant Cell Rep. 23, 716–720.

    PubMed  CAS  Google Scholar 

  • Liu, D., Galli, M. and Crawford, N.M. (2001) Engineering variegated floral patterns in tobacco plants using the arabidopsis transposable element Tag1. Plant Cell Physiol. 42, 419–423.

    PubMed  CAS  Google Scholar 

  • Lloyd, A.M., Walbot, V. and Davis, R.W. (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258, 1773–1775.

    PubMed  CAS  Google Scholar 

  • Lo, S.C. and Nicholson, R.L. (1998) Reduction of light-induced anthocyanin accumulation in inoculated sorghum mesocotyls. Implications for a compensatory role in the defense response. Plant Physiol. 116, 979–989.

    PubMed  CAS  Google Scholar 

  • Lu, C.Y., Chandler, S.F., Mason, J.G. and Brugliera, F. (2003) Florigene flowers: from laboratory to market. In: Vasil, I.K. (ed.)Plant Biotechnology 2002 and Beyond. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 333–336.

    Google Scholar 

  • Ludwig, S.R., Bowen, B., Beach, L. and Wessler, S.R. (1990) A regulatory gene as a novel visible marker for maize transformation. Science 24, 449–450.

    Google Scholar 

  • Markham, K.R., Gould, K.S., Winefield, C.S., Mitchell, K.A., Bloor, S.J. and Boase, M.R. (2000) Anthocyanic vacuolar inclusions - their nature and significance in flower colouration. Phytochemistry 55, 327–336.

    PubMed  CAS  Google Scholar 

  • Markham, K.R., Bloor, S.J., Nicholson, R., Rivera, R., Shemluck, M., Kevan, P.G. and Michener, C. (2004) Black flower coloration in wild Lisianthius nigrescens: its chemistry and ecological consequences. Z. Naturforsch. 59, 625–630.

    CAS  Google Scholar 

  • Marles, M.A., Ray, H. and Gruber, M.Y. (2003) New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry 64, 367–383.

    PubMed  CAS  Google Scholar 

  • Marrs, K.A., Alfenito, M.R., Lloyd, A.M. and Walbot, V. (1995) A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375, 397–400.

    PubMed  CAS  Google Scholar 

  • Mathews, H., Clendennen, S.K., Caldwell, C.G., Liu, X.L., Connors, K., Matheis, N., Schuster, D.K., Menasco, D.J., Wagoner, W., Lightner, J. and Wagner, D.R. (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15, 1689–1703.

    PubMed  CAS  Google Scholar 

  • Matsui, K., Tanaka, H. and Ohme-Takagi, M. (2004) Suppression of the biosynthesis of proanthocyanidin in Arabidopsis by a chimeric PAP1 repressor. Plant Biotech. J. 2, 487–493.

    CAS  Google Scholar 

  • Meng, X. and Wang, X. (2004) Regulation of flower development and anthocyanin accumulation in Gerbera hybrida. J. Hort. Sci. Biotech. 79, 131–137.

    CAS  Google Scholar 

  • Meyer, P. (1991) Engineering of novel flower colours. In: Harding, J., Singh, F. and Mol, J.N.M. (eds) Genetics and Breeding of Ornamental Species. Kluwer Academic Publishers, Dordrecht, The Netherlands pp. 285–307.

    Google Scholar 

  • Meyer, P., Heidmann, I., Forkmann, G. and Saedler, H. (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330, 677–678.

    PubMed  CAS  Google Scholar 

  • Millar, A.A. and Gubler F. (2005) The arabidopsis GAMYB-Like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17, 705–721.

    PubMed  CAS  Google Scholar 

  • Mooney, M., Desnos, T., Harrison, K., Jones, J., Carpenter, R. and Coen, E. (1995) Altered regulation of tomato and tobacco pigmentation genes caused by the delila gene of Antirrhinum. Plant J. 7, 333–339.

    CAS  Google Scholar 

  • Morita, Y., Hoshino, A., Kikuchi, Y., Okuhara, H., Ono, E., Tanaka, Y., Fukui, Y., Saito, N., Nitasaka, E., Noguchi, H. and Iida, S. (2005) Japanese morning glory dusky mutants displaying reddish-brown or purplish-gray flowers are deficient in a novel glycosylation enzyme for anthocyanin biosynthesis, UDP-glucose:anthocyanidin 3-O-glucoside-2”-O-glucosyltransferase, due to 4-bp insertions in the gene. Plant J. 42, 353–63.

    PubMed  CAS  Google Scholar 

  • Nakajima, J.-I., Sato, Y., Hoshino, T., Yamazaki, M. and Saito, K. (2006) Mechanistic study on the oxidation of anthocyanidin synthase by quantum mechanical calculation. J. Biol. Chem. 281, 21387–21398.

    PubMed  CAS  Google Scholar 

  • Nakamura, N., Fukuchi-Mizutani, M., Miyazaki, K., Suzuki, K. and Tanaka, Y. (2006) RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression. Plant Biotech. 23, 13–17.

    CAS  Google Scholar 

  • Nakayama, T., Yonekura-Sakakibara, K., Sato, T., Kikuchi, S., Fukui, Y., Fukuchi-Mizutani, M., Ueda, T., Nakao, M., Tanaka, Y., Kusumi, T. and Nishino, T. (2000) Aureusidin synthase: a polyphenol oxidase homolog responsible for flower coloration. Science 290, 1163–1166.

    PubMed  CAS  Google Scholar 

  • Nakayama, T., Suzuki, H. and Nishino, T. (2003) Anthocyanin acyltransferases: specificities, mechanism, phylogenetics, and applications. J. Mol. Cat. 23, 117–132.

    CAS  Google Scholar 

  • Napoli, C., Lemieux, C. and Jorgensen, R. (1990) Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279–289.

    PubMed  CAS  Google Scholar 

  • Nielsen, K.M., Deroles, S.C., Markham, K.R., Bradley, J.M., Podivinsky, E. and Manson, D. (2002) Antisense flavonol synthase alters copigmentation and flower color in lisianthus. Mol. Breed. 9, 217–229.

    CAS  Google Scholar 

  • Nishihara, M., Nakatsuka, T., Mishiba, K., Kikuchi, A. and Yamamura, S. (2003) Flower color modification by suppression of chalcone synthase gene in gentian. Plant Cell Physiol. 44s1, 59.

    Google Scholar 

  • Nishihara, M., Nakatsuka, T. and Yamamura, S. (2006) Flavonoid components and flower color change in transgenic tobacco plants by suppression of chalcone isomerase gene. FEBS Lett. 579, 6074–6078.

    Google Scholar 

  • Noda, K.-I., Glover, B.J., Linstead, P. and Martin, C. (1994) Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature 369, 661–664.

    PubMed  CAS  Google Scholar 

  • Noda, N., Kato, N., Kogawa, K., Kazuma, K. and Suzuki, M. (2004) Cloning and characterization of the gene encoding anthocyanin 3’,5’-O-glucosyltransferase involved in ternatin biosynthesis from blue petals of butterfly pea (Clitoria ternatea). Plant Cell Physiol. 45s1, 32.

    Google Scholar 

  • Nozue, M., Kubo, H., Nishimura, M., Katou, A., Hattori, C., Usuda, N., Nagata, T., Yasuda, H. (1993) Characterization of intravacuolar pigmented structures in anthocyanin-containing cells of sweet-potato suspension-cultures. Plant Cell Physiol. 34, 803–808.

    CAS  Google Scholar 

  • Okinaka, Y., Shimada, Y., Nakano-Shimada, R., Ohbayashi, M., Kiyokawa, S. and Kikuchi, Y. (2003) Selective accumulation of delphinidin derivatives in tobacco using a putative flavonoid 3’,5’-hydroxylase cDNA from Campanula medium. BioSci. Biotech. Biochem. 67, 161–165.

    CAS  Google Scholar 

  • Ogata, J., Kanno, Y., Itoh, Y., Tsugawa, H. and Suzuki, M. (2005) Plant biochemistry: anthocyanin biosynthesis in roses. Nature 435, 757–758.

    PubMed  CAS  Google Scholar 

  • Ono, E., Fukuchi-Mizutani, M., Nakamura, N., Fukui, Y., Yonekura-Sakakibara, K., Yamaguchi, M., Nakayama, T., Tanaka, T., Kusumi, T. and Tanaka, Y. (2006a) Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc. Natl. Acad. Sci. USA 103, 11075–11080.

    CAS  Google Scholar 

  • Ono, E., Hatayama, M., Isono, Y., Sato, T., Watanabe, R., Yonekura-Sakakibara, K., Fukuchi-Mizutani, F., Tanaka, Y., Kusumi, T., Nishino T. and Nakayama, T. (2006b) Localization of a flavonoid biosynthetic polyphenol oxidase in vacuoles. Plant J. 45, 133–143.

    CAS  Google Scholar 

  • Park, K.-I., Choi, J.-D., Hoshino, A., Morita, Y. and Iida, S. (2004) An intragenic tandem duplication in a transcriptional regulatory gene for anthocyanin biosynthesis confers pale-colored flowers and seeds with fine spots in Ipomoea tricolor. Plant J. 38, 840–849.

    PubMed  CAS  Google Scholar 

  • Paxton, R.J. and Tengo, J. (2001) Doubly duped males: the sweet and sour of the orchid’s bouquet. Trends Ecol. Evol. 16, 167–169.

    PubMed  Google Scholar 

  • Payne, C.T., Zhang, F. and Lloyd, A.M. (2000) GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics, 156, 1349–1362.

    PubMed  CAS  Google Scholar 

  • Paz-Ares, J., Peterson, P.A. and Saedler, H. (1990) Molecular analysis of the C1–I allele from Zea mays: a dominant mutant of the regulatory C1 locus. EMBO J. 9, 315–321.

    PubMed  CAS  Google Scholar 

  • Polashock, J.J., Griesbach, R.J., Sullivan, R.F. and Vorsa, N. (2002) Cloning of a cDNA encoding the cranberry dihydroflavonol-4-reductase (DFR) and expression in transgenic tobacco. Plant Sci. 163, 241–251.

    CAS  Google Scholar 

  • Quattrocchio, F., Wing, J., van der Woude, K., Souer, E., de Vetten, N., Mol, J. and Koes, R. (1999) Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. Plant Cell 11, 1433–1444.

    PubMed  CAS  Google Scholar 

  • Ramsay, N.A., Walker, A.R., Mooney, M. and Gray, J.C. (2003) Two basic-helix-loop-helix genes (MYC-146 and GL3) from Arabidopsis can activate anthocyanin biosynthesis in a white-flowered Matthiola incana mutant. Plant Molecular Biology, 52, 679–688.

    Google Scholar 

  • Ray, H., Yu, M., Auser, P., Blahut-Beatty, L., McKersie, B., Bowley, S., Westcott, N., Coulman, B., Lloyd, A. and Gruber, M.Y. (2003) Expression of anthocyanins and proanthocyanidins after transformation of alfalfa with maize Lc. Plant Physiol. 132, 1448–1463.

    PubMed  CAS  Google Scholar 

  • Rosati, C., Cadic, A., Duron, M., Renou, J.P. and Simoneau, P. (1997) Molecular cloning and expression analysis of dihydroflavonol 4-reductase gene in flower-organs of Forsythia x intermedia. Plant Mol. Biol. 35, 303–311.

    PubMed  CAS  Google Scholar 

  • Rosati, C., Simoneau, P., Treutter, D., Poupard, P., Cadot, Y., Cadic, A. and Duron, M. (2003) Engineering of flower colour in forsythia by expression of two independently-transformed dihydroflavonol 4-reductase and anthocyanidin synthase genes of flavonoid pathway. Mol. Breed. 12, 197–208.

    CAS  Google Scholar 

  • Sainz, M.B., Grotewold, E. and Chandler, V.L. (1997) Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins. Plant Cell 9, 611–625.

    PubMed  CAS  Google Scholar 

  • Saito, N., Yokoi, M., Ogawa, M., Kamijo, M. and Honda, T. (1988) 6-Hydroxyanthocyanidin glycosides in the flowers of Alstroemeria. Phytochemistry 27, 1399–1401.

    CAS  Google Scholar 

  • Santos, M.O., Crosby, W.L. and Winkel, B.S.J. (2004) Modulation of flavonoid metabolism in Arabidopsis using a phage-derived antibody. Mol. Breed. 13, 333–343.

    CAS  Google Scholar 

  • Schwinn, K.E. and Davies, K.M. (2004) Flavonoids. In: Davies, K. (ed.) Plant Pigments and their Manipulation. Blackwell Publishing, Oxford, UK, pp. 92–149.

    Google Scholar 

  • Schwinn, K.E., Davies, K.M., Deroles, S.C., Markham, K., Miller, R.M., Bradley, M., Manson, D.G. and Given, N.K. (1997) Expression of an Antirrhinum majus UDP-glucose:flavonoid-3-O-glucosyltransferase transgene alters flavonoid glycosylation and acylation in lisianthus (Eustoma grandiflorum Grise.). Plant Sci. 125, 53–61.

    CAS  Google Scholar 

  • Schwinn, K., Venail, J., Shang, Y., Mackay, S., Alm, V., Butelli, E., Oyama, R., Bailey, P., Davies, K. and Martin, C. (2006) A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18, 831–851.

    PubMed  CAS  Google Scholar 

  • Seitz, C., Eder, C., Deiml, B., Kellner, S., Martens, S. and Forkmann, G. (2006) Cloning, functional identification and sequence analysis of flavonoid 3’-hydroxylase and flavonoid 3’,5’-hydroxylase cDNAs reveals independent evolution of flavonoid 3’,5’-hydroxylase in the Asteraceae family. Plant Mol. Biol. 61, 365–381.

    PubMed  CAS  Google Scholar 

  • Shimada, Y., Nakano-Shimada, R., Ohbayashi, M., Okinaka, Y., Kiyokawa, S. and Kikuchi, Y. (1999) Expression of chimeric P450 genes encoding flavonoid-3’,5’-hydroxylase in transgenic tobacco and petunia plants. FEBS Lett. 461, 241–245.

    PubMed  CAS  Google Scholar 

  • Shimada, Y., Ohbayashi, M., Nakano-Shimada, R., Okinaka, Y., Kiyokawa, S. and Kikuchi, Y. (2001) Genetic engineering of the anthocyanin biosynthetic pathway with flavonoid-3’,5’-hydroxylase: specific switching of the pathway in petunia. Plant Cell Rep. 20, 456–462.

    CAS  Google Scholar 

  • Shiono, M., Matsugaki, N. and Takeda, K. (2005) Structure of the blue cornflower pigment. Nature 436, 791.

    PubMed  CAS  Google Scholar 

  • Sompornpailin, K., Makita, Y., Yamazaki, M. and Saito, K. (2002) A WD-repeat-containing putative regulatory protein in anthocyanin biosynthesis in Perilla frutescens. Plant Molecular Biology, 50, 485–495.

    PubMed  CAS  Google Scholar 

  • Spelt, C., Quattrocchio, F., Mol, J.N.M. and Koes, R. (2000) Anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell 12, 1619–1631.

    PubMed  CAS  Google Scholar 

  • Spelt, C., Quattrocchio, F., Mol, J. and Koes, R. (2002) ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. Plant Cell 14, 2121–2135.

    PubMed  CAS  Google Scholar 

  • Springob, K., Nakajima, J., Yamazaki, M. and Saito, K. (2003) Recent advances in the biosynthesis and accumulation of anthocyanins. Nat. Prod. Rep. 20, 288–303.

    PubMed  CAS  Google Scholar 

  • Strack, D., Vogt, T. and Schliemann, W. (2003) Recent advances in betalain research. Phytochemistry 62, 247–269.

    PubMed  CAS  Google Scholar 

  • Suzuki, K., Xue, H., Tanaka, Y., Fukui, Y., Fukuchi-Mizutani, M., Katsumoto, Y., Tsuda, S. and Kusumi, T. (2000) Flower color modifications of Torenia hybrida by cosuppression of anthocyanin biosynthesis genes. Mol. Breed. 6, 239–246.

    CAS  Google Scholar 

  • Suzuki, H., Nakayama, T., Yonekura-Sakakibara, K., Fukui, Y., Nakamura, N., Yamaguchi, M., Tanaka, Y., Kusumi, T. and Nishino, T. (2002) cDNA cloning, heterologous expressions, and functional characterization of malonyl-coenzyme A:anthocyanidin 3-O-glucoside-6”-O-malonyltransferase from dahlia flowers. Plant Physiol. 130, 2142–2151.

    PubMed  CAS  Google Scholar 

  • Suzuki, H., Sawada, K., Yonekura-Sakakibara, K., Nakayama, T., Yamaguchi, M.-A. and Nishino, T. (2003) Identification of a cDNA encoding malonyl-coenzyme A:anthocyanidin 3-O-glucoside-6”-O-malonyltransferase from cineraria (Senecio cruentus) flowers. Plant Biotech. 20, 229–234.

    CAS  Google Scholar 

  • Tanaka, Y., Fukui, Y., Fukuchi-Mizutani, M., Holton, T.A., Higgins, E. and Kusumi, T. (1995) Molecular cloning and characterization of Rosa hybrida dihydroflavonol 4-reductase gene. Plant Cell Physiol. 36, 1023–1031.

    PubMed  CAS  Google Scholar 

  • Tanaka, Y., Tsuda, S. and Kusumi, T. (1998) Metabolic engineering to modify flower color. Plant Cell Physiol. 39, 1119–1126.

    CAS  Google Scholar 

  • Tanaka, Y., Katsumoto, Y., Brugliera, F. and Mason, J. (2005) Genetic engineering in floriculture. Plant Cell Tissue Organ Cult. 80, 1–24.

    CAS  Google Scholar 

  • Tatsuzawa, F., Murata, N., Shinoda, K., Suzuki, R. and Saito, N. (2003) Flower colors and anthocyanin pigments in 45 cultivars of Alstroemeria L. J. Jap. Soc. Hort. Sci. 72, 243–251.

    CAS  Google Scholar 

  • Taylor, L.P. and Jorgensen, R. (1992) Conditional male fertility in chalcone synthase-deficient petunia. J. Heredity 83, 11–17.

    CAS  Google Scholar 

  • Tsuda, S., Fukui, Y., Nakamura, N., Katsumoto, Y., Yonekura-Sakakibara, K., Fukuchi-Mizutani, M., Ohira, K., Ueyama, Y., Ohkawa, H., Holton, T.A., Kusumi, T. and Tanaka, Y. (2004) Flower color modification of Petunia hybrida commercial varieties by metabolic engineering. Plant Biotech. 21, 377–386.

    CAS  Google Scholar 

  • Ueyama, Y., Suzuki, K., Fukuchi-Mizutani, M., Fukui, Y., Miyazaki, K., Ohkawa, H., Kusumi, T. and Tanaka, Y. (2002) Molecular and biochemical characterization of torenia flavonoid 3’-hydroxylase and flavone synthase II and modification of flower color by modulating the expression of these genes. Plant Sci. 163, 253–263.

    CAS  Google Scholar 

  • Ueyama, Y., Katsumoto, Y., Fukui, Y., Fukuchi-Mizutani, M., Ohkawa, H., Kusumi, T., Iwashita, T. and Tanaka, Y. (2006) Molecular characterization of the flavonoid biosynthetic pathway and flower color modification of Nierembergia sp. Plant Biotech. 23, 19–24.

    CAS  Google Scholar 

  • van der Krol, A.R., Lenting, P.E., Veenstra, J.G., van der Meer, I.M., Koes, R.E., Gerats, A.G.M., Mol, J.N.M. and Stuitje, A.R. (1988) An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333, 866–869.

    Google Scholar 

  • van der Krol, A.R., Mur, L.A., Beld, M., Mol, J.N.M. and Stuitje, A.R. (1990a) Flavonoid genes in petunia: addition of a limited number of additional copies may lead to a suppression of gene activity. Plant Cell 2, 291–299.

    Google Scholar 

  • van der Krol, A.R., Mur, L.A., Delange, P., Gerats, A.G.M., Mol, J.N.M. and Stuitje, A.R. (1990b) Antisense chalcone synthase genes in Petunia – visualization of variable transgene expression. Mol. Gen. Genet. 22, 204–212.

    Google Scholar 

  • Vogt, T. (2000) Glycosyltransferases involved in plant secondary metabolism. In: Romeo, J.T., Ibrahim, R., Varin, L. and De Luca, V. (eds)Evolution of Metabolic Pathways. Elsevier Science Ltd, Oxford, UK, pp. 317–347.

    Google Scholar 

  • Vom Endt, D., Kijne, J.W. and Memelink, J. (2002) Transcription factors controlling plant secondary metabolism: what regulates the regulators? Phytochemistry 61, 107–114.

    PubMed  CAS  Google Scholar 

  • Walker, A.R., Davison, P.A., Bolognesi-Winfield, A.C., James, C.M., Srinivasan, N., Blundell, T.L., Esch, J.J., Marks, M.D. and Gray, J.C. (1999) The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11, 1337–1350.

    PubMed  CAS  Google Scholar 

  • Weiss, M.R. (1995) Floral colour change: a widespread functional convergence. Am. J. Bot. 82, 167–185.

    Google Scholar 

  • Weiss, D. (2000) Regulation of flower pigmentation and growth: multiple signaling pathways control anthocyanin synthesis in expanding petals. Physiol. Plant. 110, 152–157.

    CAS  Google Scholar 

  • Wellmann, F., Griesser, M., Schwab, W., Martens, S., Eisenreich, W., Matern, U. and Lukacin, R. (2006) Anthocyanidin synthase from Gerbera hybrida catalyzes the conversion of (+)-catechin to cyanidin and a novel procyanidin. FEBS Lett. 580, 1642–1648.

    PubMed  CAS  Google Scholar 

  • Wilmouth, R.C., Turnbull, J.J., Welford, R.W., Clifton, I.J., Prescott, A.G. and Schofield, C.J. (2002) Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana. Structure 10, 93.

    PubMed  CAS  Google Scholar 

  • Winefield, C. (2002) The final steps in anthocyanin formation: a story of modification and sequestration. Adv. Bot. Res. 37, 55–74.

    CAS  Google Scholar 

  • Winefield, C.S., Lewis, D.H., Swinny, E.E., Zhang, H., Arathoon, H.S., Fischer, T.C., Halbwirth, H., Stich, K., Gosch, C., Forkmann, G. and Davies, K.M. (2005) Investigation of 3-deoxyanthocyanin biosynthesis in Sinningia cardinalis. Physiol. Plant. 124, 419–430.

    CAS  Google Scholar 

  • Xie, D.-Y., Sharma, S.B., Pavia, N.L., Ferreira, D. and Dixon, R.A. (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299, 396–399.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, T., Fukada-Tanaka, S., Inagaki, Y., Saito, N., Yonekura-Sakakibara, K., Tanaka, Y., Kusumi, T. and Iida, S. (2001) Genes encoding the vacuolar Na+/H+ exchanger and flower coloration. Plant Cell Physiol. 42, 451–461.

    PubMed  CAS  Google Scholar 

  • Yamazaki, M., Gong, Z., Fukuchi-Mizutani, M., Fukui, Y., Tanaka, Y., Kusumi, T. and Saito, K. (1999) Molecular cloning and biochemical characterization of a novel anthocyanin 5-O-glucosyltransferase by mRNA differential display for plant forms regarding anthocyanin. J. Biol. Chem. 274, 7405–7511.

    PubMed  CAS  Google Scholar 

  • Yamazaki, M., Yamagishi, E., Gong, Z., Fukuchi-Mizutani, M., Fukui, Y., Tanaka, Y., Kusumi, T., Yamaguchi, T. and Saito, K. (2002) Two flavonoid glucosyltransferases from Petunia hybrida: molecular cloning, biochemical properties and developmentally regulated expression. Plant Mol. Biol. 48, 401–411.

    PubMed  CAS  Google Scholar 

  • Zimmermann, I.M., Heim, M.A., Weisshaar, B. and Uhrig, J.F. (2004) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J. 40, 22–34.

    PubMed  CAS  Google Scholar 

  • Zuker, A., Tzfira, T., Ben-Meir, H., Ovadis, M., Schklarman, E., Itzhaki, H., Forkmann, G., Martens, S., Neta-Sharir, I., Weiss, D. and Vainstein, A. (2002) Modification of flower colour and fragrance by antisense suppression of the flavanone 3-hydroxylase gene. Mol. Breed. 9, 33–41.

    CAS  Google Scholar 

  • Zrÿd, J-.P. and Christinet, L. (2004) Betalains. In: Davies, K. (ed.) Plant Pigments and their Manipulation. Blackwell Publishing, Oxford, UK, pp. 185–213.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Davies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Davies, K.M. (2008). Modifying Anthocyanin Production in Flowers. In: Winefield, C., Davies, K., Gould, K. (eds) Anthocyanins. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77335-3_3

Download citation

Publish with us

Policies and ethics