Skip to main content

Sorghum Allelopathy for Weed Management in Wheat

  • Chapter
Allelopathy in Sustainable Agriculture and Forestry

Abstract

Weeds cause substantial decline in agricultural production. To overcome weed infestation modern agricultural practices adopted heavy use of a large variety of herbicides. With rising human health and ecological concerns about the adverse effects of indiscriminate use of farm chemicals research on alternative weed management methods is underway worldwide. Exploitation of allelopathic potential of different crop/plant species for weed management under field conditions is one such approach. Sorghum has been reported to contain several allelochemicals in its aerial as well as underground parts. It offers a great promise as a tool for weed management. We conducted a series of field experiments to test allelopathic effects of this crop on weed control and yield of wheat. We found that 10% w/v water leachate of aerial parts of sorghum (also called sorgaab) applied at 30 and 60 days after sowing can reduce weed biomass by as much as 49% with concomitant increase of wheat yield over 20% compared to control. Furthermore, use of sorgaab in combination of herbicides can significantly reduce the amount of herbicide use (by 50%) and get comparable grain yield of wheat as obtained by using the recommended dose of the herbicides. We concluded that sorgaab used alone or in combination with herbicide has a great promise in increasing weed control and grain yield of wheat. Application of this method of weed management has enormous economic and environmental benefits in wheat cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad, S., Cheema, Z.A. and Mahmood, A. (1991) Response of some rabi weeds and wheat to allelopathic effects of irrigated sorghum in a sorghum-wheat cropping system. Pak. J. Weed. Sci. Res. 4, 81–88.

    Google Scholar 

  • Altieri, M.A. and Doll, J.D. (1978) The potential of allelopathy as a tool for weed management in crops. P. Natl. Acad. Sci. 24, 495–502.

    Google Scholar 

  • Anaya, A.L. (1999) Allelopathy as a tool in the management of biotic resource in agroecosystems. Crit. Rev. Plant Sci. 18, 697–739.

    CAS  Google Scholar 

  • Barker, A.V. and Bhowmik, P.C. (2001) Weed control with crop residues in vegetable cropping systems. J. Crop Prod. 4, 163–184.

    Article  Google Scholar 

  • Cheema, Z.A. and Ahmed, S. (1992) Allelopathy: a potential tool for weed management. Proceedings of National Seminar on the role of Plant health and care in Agricultural Production held on December 28–29, 1988 at University of Agriculture, Faisalabad, Pakistan.

    Google Scholar 

  • Cheema, Z.A. and Khaliq, A. (2000). Use of sorghum allelopathic properties to control weeds in irrigated wheat in semi arid region of Punjab. Agric. Ecosyst. Environ. 79, 105–112.

    Article  Google Scholar 

  • Cheema, Z.A., Ali, B. and Khaliq, A. (2005) Determining suitable combination of sorgaab and pendimethalin for weed control in cotton (Gossypium hirsutum L.). Int. J. Agric. Biol. 7, 889–891.

    CAS  Google Scholar 

  • Cheema, Z.A., Asim, M. and Khaliq, A. (2000c) Sorghum allelopathy for weed control in cotton (Gossypium arboreum L.) Int. J. Agric. Biol. 2, 37–41.

    Google Scholar 

  • Cheema, Z.A., Farid, M.S. and Khaliq, A. (2003d) Efficacy of concentrated sorgaab in combination with low rates of atrazine for weed control in maize. J. Animal Plant Sci. 13, 48–51.

    Google Scholar 

  • Cheema, Z.A., Hussain, S. and Khaliq, A. (2003a) Efficacy of sorgaab in combination with allelopathic water extracts and reduced rates of pendimethalin for weed control in mungbean. Indus. J. Plant Sci. 2, 21–25.

    Google Scholar 

  • Cheema, Z.A., Iqbal, M. and Ahmad, R. (2002a) Response of wheat varieties and some rabi weeds to allelopathic effects of sorghum water extract. Int. J. Agric. Biol. 4, 52–55.

    Google Scholar 

  • Cheema, Z.A., Jaffer, I. and Khaliq, A. (2003e) Reducing isoprotron dose in combination with sorgaab for weed control in wheat. Pak. J. Weed Sci. Res. 9, 153–160.

    Google Scholar 

  • Cheema, Z.A., Khaliq, A. and Akhtar, S. (2001) Use of sorgaab (sorghum water extract) as a natural weed inhibitor in spring mungbean. Int. J. Agric. Biol. 3, 515–518.

    Google Scholar 

  • Cheema, Z.A., Khaliq, A. and Ali, K. (2002b) Efficacy of sorgaab for weed control in wheat grown at different fertility levels. Pak. J. Weed Sci. Res. 8, 33–38.

    Google Scholar 

  • Cheema, Z.A., Khaliq, A. and Farooq, R. (2003c) Effect of concentrated sorgaab in combination with herbicides and a surfactant in wheat. J. Animal Plant Sci. 13, 10–13.

    Google Scholar 

  • Cheema, Z.A., Khaliq, A. and Hussain, R. (2003b) Reducing herbicide rate in combination with allelopathic sorgaab for weed control in cotton. Int. J. Agric. Biol. 5, 4–6.

    Google Scholar 

  • Cheema, Z.A., Khaliq, A. and Mubeen, M. (2003f) Response of wheat and winter weeds to foliar application of different plant water extracts of sorghum (S. bicolor). Pak. J. Weed Sci. Res. 9, 89–97.

    Google Scholar 

  • Cheema, Z.A., Khaliq, A. and Saeed, S. (2004) Weed control in maize (Zea mays L.) through sorghum allelopathy. J. Sustain. Agric. 23, 73–86.

    Article  Google Scholar 

  • Cheema, Z.A., Luqman, M. and Khaliq, A. (1997) Use of allelopathic extracts of sorghum and sunflower herbage for weed control in wheat. J. Animal Plant Sci. 7, 91–93.

    Google Scholar 

  • Cheema, Z.A., Rakha, A. and Khaliq, A. (2000b) Use of sorgaab and sorghum mulch for weed management in mungbean. Pak. J. Agric. Sci. 37, 140–144.

    Google Scholar 

  • Cheema, Z.A., Sadiq, H.M.I. and Khaliq, A. (2000a) Efficacy of sorgaab (sorghum water extract) as a natural weed inhibitor in wheat. Int. J. Agric. Biol. 2, 144–146.

    Google Scholar 

  • Chou, C.H. (1999) Roles of allelopathy in plant biodiversity and sustainable agriculture. Crit. Rev. Plant Sci. 18, 609–636.

    Article  Google Scholar 

  • Einhellig, F.A. (1996) Interactions involving allelopathy in cropping systems. Agron. J. 88, 886–893.

    CAS  Google Scholar 

  • Einhellig, F.A. and Rasmussen, J.A. (1989) Prior cropping with grain sorghum inhibits weeds. J. Chem. Ecol. 15, 951–960.

    Article  Google Scholar 

  • Einhellig, F.A. and Souza, I.F. (1992) Allelopathic activity of sorgoleone. J. Chem. Ecol. 18, 1–11.

    Article  CAS  Google Scholar 

  • Forney, D.R. and Foy, C.L. (1985) Phytotoxicity of products from rhizospheres of a sorghum-sudangrass hybrid (S. bicolor x S. sudanense). Weed Sci. 33, 597–604.

    CAS  Google Scholar 

  • Guenzi, W.D. and McCalla, T.M. (1966) Phenolic acids in oats, wheat, sorghum and corn residues and their phytotoxicity. Agron. J. 58, 303–304.

    CAS  Google Scholar 

  • Guenzi, W.D., McCalla, T.M. and Norstadt, F.A. (1967) Presence and persistence of phytotoxic substances in wheat, oat, corn, and sorghum residues. Agron. J. 59, 163–165.

    CAS  Google Scholar 

  • Hoffman, M.L., Weston, L.A., Snyder, J.C. and Regnier, E.E. (1996) Allelopathic influence of germinating seeds and seedlings of cover crops on weed species. Weed Sci. 44, 579–584.

    CAS  Google Scholar 

  • Jamil, M., Cheema, Z.A. and Khaliq, A. (2007) Development of suitable strategies for the economical control of Avena fatua and Phalaris minor in wheat. Int. J. Agric. Biol. 7, 719–723.

    Google Scholar 

  • Khaliq, A., Cheema, Z.A., Mukhtar, M.A. and. Basra, S.M.A. (1999) Evaluation of sorghum, (Sorghum bicolor) water extract for weed control in soybean. Int. J. Agric. Biol. 1, 23–26.

    Google Scholar 

  • Kimber, R.W.L. (1973) Phytotoxicity from plant residues. II. The effect of time of rotting straw from some grasses and legumes on the growth of wheat seedlings. Plant Soil 38, 347–361.

    Article  Google Scholar 

  • Kohli, R.K., Batish, D., and Singh, H.P. (1998) Allelopathy and its implications in agroecosystems. J. Crop Prod. 1, 169–202.

    Article  Google Scholar 

  • Leather, G.R. (1983) Sunflowers (Helianthus annuus) are allelopathic to weeds. Weed Sci. 31, 37–42.

    Google Scholar 

  • Liebl, R., Simmons, F.W., Wax, L.M. and Stoller, E.W. (1992) Effect of rye (Secale cereale) mulch on weed control and soil moisture in soybeans (Glycine max). Weed Technol. 6, 838–846.

    Google Scholar 

  • Liebman, M. and Mohler, C.L. (2001) Weed and the soil environment. In: Liebman, M., Mohler, C.L. and Staver, C.P. (Eds), Ecological Management of Agricultural Weeds. Cambridge University Press, Cambridge, UK, pp. 210–268.

    Google Scholar 

  • Masiunas, J.B., Weston, L.A. and Weller, S.C. (1995) The impact of rye cover crops on weed populations in a tomato cropping system. Weed Sci. 43, 318–323.

    CAS  Google Scholar 

  • Netzley, D.H. and Butler, L.G. (1986) Roots of sorghum exude hydrophobic droplets containing biologically active components. Crop Sci. 26, 776–778.

    Google Scholar 

  • Nicollier, J.F., Pope, D.F. and Thompson, A.C. (1983) Biological activity of dhurrin and other compounds from johnsongrass (Sorghum halepense). J. Agric. Food Chem. 31, 744–748.

    Article  CAS  Google Scholar 

  • Nimbal, C.I., Yerkes, C.N., Weston, L.A. and Weller, S.C. (1996). Herbicidal activity and site of action of natural product sorgoleone. Pestic. Biochem. Phys. 54, 73–83.

    Article  CAS  Google Scholar 

  • Panasiuk, O., Bills, D.D. and Leather, G.R. (1986) Allelopathic influence of Sorghum bicolor on weeds during germination and early development of seedling. J. Chem. Ecol. 12, 1533–1543.

    Article  Google Scholar 

  • Patrick, Z.A., Tousson, T.A. and Snyder, W.C. (1963) Phytotoxic substances in arable soils associated with decomposition of plant residues. Phytopathol. 53, 152–161.

    Google Scholar 

  • Purvis, C.E. (1990) Differential responses of wheat to retained crop stubbles. I. Stubble type and degree of decomposition. Aust. J. Agric. Res. 41, 225–242.

    Article  Google Scholar 

  • Putnam, A.R. (1988) Allelochemicals from plants as herbicides. Weed Technol. 2, 510–518.

    CAS  Google Scholar 

  • Putnam, A.R. and DeFrank, J. (1983) Use of phytotoxic plant residues for selective weed control. Crop Prot. 2, 173–181.

    Article  Google Scholar 

  • Putnam, A.R. and Duke, W.B. (1978) Allelopathy in agroecosystems. Annu. Rev. Phytopathol. 16, 431–451.

    Google Scholar 

  • Rimando, A.M., Olofsdotter, M., Dayan, F.E. and Duke, S.O. (2001) Searching for rice allelochemicals: an example of bioassay guided isolation. Agron. J. 93, 16–20.

    CAS  Google Scholar 

  • Sharif, M.M., Cheema, Z.A. and Khaliq, A. (2005) Reducing herbicide dose in combination with sorghum water extract for weed control in wheat (Triticum aestivum L.). Int. J. Agric. Biol. 7, 560–563.

    CAS  Google Scholar 

  • Singh, H.P., Batish, D.R. and Kohli, R.K. (2001) Allelopathy in agroecosystems: an overview. J. Crop Prod. 4, 1–41.

    Article  CAS  Google Scholar 

  • Smeda, R.J. and Weller, S.C. (1996) Potential of rye (Secale cereale) for weed management in transplant tomatoes (Lycopersicon esculentum). Weed Sci. 44, 596–602.

    CAS  Google Scholar 

  • Swanton, C.J. and Murphy, S.D. (1996) Weed science beyond the weeds: the role of integrated weed management (IWM) in agroecosystem health. Weed Sci. 44, 437–445.

    CAS  Google Scholar 

  • Weston, L.A. (1996) Distinguishing resource competition and chemical interference overcoming the methodological impasse. Agron. J. 88, 866–875.

    Google Scholar 

  • Weston, L.A. and Czarnota, M.A. (2001) Activity and persistence of sorgoleone, a long-chain hydroquinone produced by Sorghum bicolor. J. Crop Prod. 4, 363–377.

    Article  CAS  Google Scholar 

  • Weston, L.A., Harmon, R. and Mueller, S. (1989) Allelopathic potential of sorghum-sudangrass hybrid (Sudex). J. Chem. Ecol. 15, 1855–1865.

    Article  Google Scholar 

  • Woodhead, S. (1981) Environmental and biotic factors affecting the phenolic content of different cultivars of Sorghum bicolor. J. Chem. Ecol. 7, 1035–1041.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Cheema, Z.A., Khaliq, A., Farooq, M. (2008). Sorghum Allelopathy for Weed Management in Wheat. In: Zeng, R.S., Mallik, A.U., Luo, S.M. (eds) Allelopathy in Sustainable Agriculture and Forestry. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77337-7_13

Download citation

Publish with us

Policies and ethics