Skip to main content

Harry Markowitz and the Early History of Quadratic Programming

  • Chapter
Handbook of Portfolio Construction

Abstract

Despite his fame as the father of modern portfolio selection theory, Harry Markowitz’s pioneering efforts in the methodology of quadratic programming are surprisingly obscure. This article is primarily about Markowitz’s critical line algorithm as a contribution to the early history of quadratic programming (as distinct from the more specialized portfolio selection problem). After documenting our claim that the critical line algorithm received scant attention around the time of its introduction, we discuss some factors that may have led to this state of affairs. We then elaborate an argument for the repeatedly made assertion that Markowitz’s critical line algorithm and Philip Wolfe’s simplex method for quadratic programming are equivalent. We do this by relating both of them to the parametric principal pivoting method of quadratic programming and linear complementarity theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • E.W. Barankin and R. Dorfman (1955). Toward quadratic programming, Report to the Logistics Branch, Office of Naval Research.

    Google Scholar 

  • E.W. Barankin and R. Dorfman (1956). A method for quadratic programming, Econometrica 24, 340.

    Google Scholar 

  • E.W. Barankin and R. Dorfman (1958). On quadratic programming, University of California Publications in Statistics 2:13, University of California Press, Berkeley, pp. 285–318.

    Google Scholar 

  • E.M.L. Beale (1955). On minimizing a convex function subject to linear inequalities, Journal of the Royal Statistical Society (B) 17, 173–184.

    Google Scholar 

  • E.M.L. Beale (1959). On quadratic programming, Naval Research Logistics Quarterly 6, 227–243.

    Article  Google Scholar 

  • E.M.L. Beale (1968). Mathematical Programming in Practice. Sir Isaac Pitman and Sons, London.

    Google Scholar 

  • M.J. Best (1984). Equivalence of some quadratic programming algorithms, Mathematical Programming 30, 71–87.

    Article  Google Scholar 

  • M.J. Best (1996). An algorithm for the solution of the parametric quadratic programming problem, in (H. Fischer, B. Riedmüller and S. Schäffler, eds.) Applied Mathematics and Parallel Computing—Festschrift for Klaus Ritter. Physica-Verlag, Heidelberg, pp. 57–76.

    Google Scholar 

  • J.C.G. Boot (1964). Quadratic Programming. Rand McNally and Company, Chicago.

    Google Scholar 

  • Y-Y. Chang and R.W. Cottle (1980). Least-index resolution of degeneracy in quadratic programming, Mathematical Programming 18, 127–137.

    Article  Google Scholar 

  • R.W. Cottle (1963). Symmetric dual quadratic programs, Quarterly of Applied Mathematics 21, 237–243.

    Google Scholar 

  • R.W. Cottle (1964). Note on a fundamental theorem in quadratic programming, Journal of the Society for Industrial and Applied Mathematics 12, 663–665.

    Article  Google Scholar 

  • R.W. Cottle (1968). The principal pivoting method of quadratic programming, in (G.B. Dantzig and A.F. Veinott, Jr., eds.) Mathematics of the Decision Sciences, Part 1. American Mathematical Society, Providence, R.I., pp. 144–162.

    Google Scholar 

  • R.W. Cottle (1972). Monotone solutions of the parametric linear complementarity problem, Mathematical Programming 3, 210–224.

    Article  Google Scholar 

  • R.W. Cottle and Y-Y. Chang (1992). Least-index resolution of degeneracy resolution of degeneracy in linear complementarity with sufficient matrices, SIAM Journal on Matrix Analysis and Applications 13, 1131–1141.

    Article  Google Scholar 

  • R.W. Cottle and G.B. Dantzig (1968). Complementary pivot theory of mathematical programming, Linear Algebra and its Applications 1, 103–125.

    Article  Google Scholar 

  • R.W. Cottle and A. Djang (1979). Algorithmic equivalence in quadratic programming I: A least-distance programming problem, Journal of Optimization Theory and Applications 28, 275–301.

    Article  Google Scholar 

  • R.W. Cottle, G.J. Habetler, and C.E. Lemke (1970). Quadratic forms semi-definite over convex cones, in (H.W. Kuhn, ed.) Proceedings of the Princeton Symposium on Mathematical Programming. Princeton University Press, Princeton, N.J., pp. 551–565.

    Google Scholar 

  • R.W. Cottle, J.S. Pang, and R.E. Stone (1992). The Linear Complementarity Problem. Academic Press, Boston.

    Google Scholar 

  • R.W. Cottle and R.E. Stone (1983). On the uniqueness of solutions to linear complementarity problems, Mathematical Programming 27, 191–213.

    Article  Google Scholar 

  • G.B. Dantzig (1961). Quadratic programming: A variant of the Wolfe-Markowitz algorithms, Research Report 2, Operations Research Center, University of California, Berkeley.

    Google Scholar 

  • G.B. Dantzig (1963). Linear Programming and Extensions. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • G.B. Dantzig and R.W. Cottle (1967). Positive (semi-)definite programming, in (J. Abadie, ed.) Nonlinear Programming. North-Holland Publishing Company, Amsterdam, pp. 55–73.

    Google Scholar 

  • G.B. Dantzig, E. Eisenberg, and R.W. Cottle (1965). Symmetric dual nonlinear programs, Pacific Journal of Mathemtics 15, 809–812.

    Google Scholar 

  • G.B. Dantzig, A. Orden, and P. Wolfe (1955). The generalized simplex method for minimizing a linear form under linear inequality restraints, Pacific Journal of Mathematics 5, 183–195.

    Google Scholar 

  • J.B. Dennis (1959). Mathematical Programming and Electrical Networks. John Wiley & Sons, New York.

    Google Scholar 

  • A. Djang (1979). Algorithmic Equivalence in Quadratic Programming. PhD thesis, Department of Operations Research, Stanford University, Stanford, Calif.

    Google Scholar 

  • R. Dorfman (1951). Application of Linear Programming to the Theory of the Firm. University of California Press, Berkeley.

    Google Scholar 

  • M. Frank and P. Wolfe (1956). An algorithm for quadratic programming, Naval Research Logistics Quarterly 3, 95–110.

    Article  Google Scholar 

  • D. Goldfarb (1972). Extensions of Newton’s method and simplex methods for quadratic programs, in (F.A. Lootsma, ed.) Numerical Methods for Numerical Optimization. Academic Press, New York, pp. 239–254.

    Google Scholar 

  • R.L. Graves (1967). A principal pivoting simplex algorithm for linear and quadratic programming, Operations Research 15, 482–494.

    Article  Google Scholar 

  • R. L. Graves and P. Wolfe, eds. (1963). Recent Advances in Mathematical Programming. McGraw-Hill, New York.

    Google Scholar 

  • G. Hadley (1964). Nonlinear and Dynamic Programming. Addison-Wesley Publishing Company, Inc., Reading, Mass.

    Google Scholar 

  • C. Hildreth (1954). Point estimates of ordinates of concave functions, Journal of the American Statistical Association 49, 598–619.

    Article  Google Scholar 

  • C. Hildreth (1957). A quadratic programming procedure, Naval Research Logistics Quarterly 4, 79–85.

    Article  Google Scholar 

  • H.S. Houthakker (1953). La forme des courbes d’Engel, Cahiers du Séminaire d’Économetrie 2 1953, 59–66.

    Google Scholar 

  • H.S. Houthakker (1959). The capacity method of quadratic programming, Econometrica 28, 62–87.

    Article  Google Scholar 

  • S. Karlin (1959). Mathematical Methods and Theory in Games, Programming, and Economics, Volume I. Addison-Wesley Publshing Company, Inc., Reading, Mass.

    Google Scholar 

  • W. Karush (1939). Minima of functions of several variables with inequalities as side conditions, Masters Thesis, Department of Mathematics, University of Chicago.

    Google Scholar 

  • E.L. Keller (1973). The general quadratic programming problem, Mathematical Programming 5, 311–337.

    Article  Google Scholar 

  • H.W. Kuhn and A.W. Tucker (1951). Nonlinear programming, in (J. Neyman, ed.) Second Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley, pp. 481–492.

    Google Scholar 

  • H.P. Künzi and W. Krelle (1966). Nonlinear Programming. Blaisdell, Waltham, Mass. [Translation by F. Levin of Nichtlineare Programmierung. Springer-Verlag, Berlin, 1962.]

    Google Scholar 

  • C.E. Lemke (1965). Bimatrix equilibrium points and mathematical programming, Management Science 11, 681–689.

    Article  Google Scholar 

  • C.E. Lemke and J.T. Howson, jr. (1964). Equilibrium points of bimatrix games, Journal of the Society for Industrial and Applied Mathematics 12, 413–423.

    Google Scholar 

  • H. Markowitz (1952). Portfolio selection, The Journal of Finance 7, 77–91.

    Article  Google Scholar 

  • H. Markowitz (1955). The optimization of quadratic functions subject to linear constraints, Research Memorandum RM 1438, The RAND Corporation, Santa Monica, 21 February 1955.

    Google Scholar 

  • H. Markowitz (1956). The optimization of a quadratic function subject to linear constraints, Naval Research Logistics Quarterly 3, 111–133.

    Article  Google Scholar 

  • H. Markowitz (1959). Portfolio Selection: Efficient Diversification of Investments. Wiley, New York. [See also second printing (1970) with corrections and addenda, Yale University Press, New Haven, Ct.]

    Google Scholar 

  • H. Markowitz (1987). Mean-Variance Analysis in Portfolio Choice and Capital Markets. Basil Blackwell, Oxford and Cambridge, Mass.

    Google Scholar 

  • H. Markowitz (1999). “The early history of portfolio theory: 1600–1960”, Financial Analysts Journal 55, 5–16.

    Article  Google Scholar 

  • H. Markowitz (2000). Mean-Variance Analysis in Portfolio Choice and Capital Markets. Wiley, New York.

    Google Scholar 

  • H. Markowitz (2002). Efficient portfolios, sparse matrices, and entities: A retrospective, Operations Research 50, 154–160.

    Article  Google Scholar 

  • K.G. Murty (1971). On the parametric complementarity problem. Engineering Summer Conference Notes, University of Michigan, Ann Arbor.

    Google Scholar 

  • K.G. Murty (1988). Linear Complementarity, Linear and Nonlinear Programming. Heldermann-Verlag, Berlin.

    Google Scholar 

  • J-S. Pang (1980a). A new and efficient algorithm for a class of portfolio selection problems, Operations Research 28, 754–767.

    Article  Google Scholar 

  • J-S. Pang (1980b). A parametric linear complementarity technique for optimal portfolio selection with a risk-free asset, Operations Research 28, 927–941.

    Article  Google Scholar 

  • J-S. Pang (1981). An equivalence between two algorithms for quadratic programming, Mathematical Programming 20, 152–165.

    Article  Google Scholar 

  • J.S. Pang, I. Kaneko, and W.P. Hallman (1979). On the solution of some (parametric) linear complementarity problems with applications to portfolio selection, structural engineering and actuarial graduation, Mathematical Programming 16, 325–347.

    Article  Google Scholar 

  • C. van de Panne (1975). Methods for Linear and Quadratic Programming. North-Holland Publishing Company, Amsterdam.

    Google Scholar 

  • C. van de Panne and A.B. Whinston (1964a). The simplex and the dual method for quadratic programming, Operational Research Quarterly 15, 355-388.

    Article  Google Scholar 

  • C. van de Panne and A.B. Whinston (1964b). Simplicial methods for quadratic programming, Naval Research Logistics Quarterly 11 273–302.

    Article  Google Scholar 

  • C. van de Panne and A.B. Whinston (1969). The symmetric formulation of the simplex method for quadratic programming, Econometrica 37, 507–527.

    Article  Google Scholar 

  • A. Perold (1984). Large-scale portfolio optimization, Management Science 30, 1143–1160.

    Article  Google Scholar 

  • D.L. Smith (1978). The Wolfe-Markowitz algorithm for nonholonomic elastoplastic analysis, Engineering Structures 1, 8–16.

    Article  Google Scholar 

  • H. Theil and C. van de Panne (1960). Quadratic programming as an extension of classical quadratic maximization, Management Science 7, 1–20.

    Article  Google Scholar 

  • A.W. Tucker (1963). Principal pivotal transforms of square matrices, SIAM Review 5, 305.

    Google Scholar 

  • H. Väliaho (1994). A procedure for the one-parameter linear complementarity problem, Optimization 29, 235–256.

    Article  Google Scholar 

  • P. Wolfe (1959). The simplex method for quadratic programming, Econometrica 27, 382–398.

    Article  Google Scholar 

  • P. Wolfe (1963). Methods of nonlinear programming, in Graves and Wolfe (1963), pp. 67–86.

    Google Scholar 

  • P. Wolfe (2008). Private communication.

    Google Scholar 

  • G. Zoutendijk (1960). Methods of Feasible Directions. Van Nostrand, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Cottle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cottle, R.W., Infanger, G. (2010). Harry Markowitz and the Early History of Quadratic Programming. In: Guerard, J.B. (eds) Handbook of Portfolio Construction. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77439-8_8

Download citation

Publish with us

Policies and ethics