Skip to main content

Nonlinear Interactions

  • Chapter
  • First Online:
Spin Waves

In Chapter 2, we introduced the Lagrangian and the Hamiltonian equations of motion. The variational formulation of Chapter 7 describes the Lagrangian as an energy density functional from which it is possible to derive the equations of motion. In the case of wave propagation, the physics of nonlinear wave interactions becomes mathematically tractable when we use the Hamiltonian formalism with the understanding that the classical spin waves can be represented by their complex amplitudes instead of Bose operators that would represent magnons. The Hamiltonian method is specifically suitable for the analysis of weakly interacting and weakly dissipative wave systems, where nonlinear interactions can be treated as higher order corrections to the lowest order wave solutions. The Hamiltonian yields first-order differential equations which are easier to solve than Lagrange’s equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Cash and D. D. Stancil, ‘Measurement of magnetostatic wave profiles using the interaction with transverse optical guided modes,’ IEEE Trans. Mag., vol. 32, p. 5188, 1996.

    Article  Google Scholar 

  2. D. J. Seagle, S. H. Charap, and J. O. Artman, ‘Foldover in YIG,’ J. Appl. Phys., vol. 57, p. 3706, 1985.

    Article  Google Scholar 

  3. Y. K. Fetisov, C. E. Patton, and V. T. Synogach, ‘Nonlinear ferromagnetic resonance and foldover in yttrium iron garnet thin films – inadequacy of the classical model,’ IEEE Trans. Mag., vol. 35, p. 4511, 1999.

    Article  Google Scholar 

  4. Y. T. Zhang, C. E. Patton, and M. V. Kogekar, ‘Ferromagnetic resonance foldover in single crystal YIG films – sample heating or Suhl instability,’ IEEE Trans. Mag., vol. 22, p. 993, 1986.

    Article  Google Scholar 

  5. A. Prabhakar and D. D. Stancil, ‘Auto-oscillation thresholds at the main resonance in ferrimagnetic films,’ Phys. Rev. B, vol. 57, p. 11483, 1998.

    Article  Google Scholar 

  6. M. Weiss, ‘Microwave and low-frequency oscillation due to resonance instabilities in ferrites,’ Phys. Rev. Lett., vol. 1, p. 239, 1958.

    Article  Google Scholar 

  7. H. Suhl, ‘The theory of ferromagnetic resonance at high signal powers,’ J. Phys. Chem. Solids, vol. 1, p. 209, 1957.

    Article  Google Scholar 

  8. X. Y. Zhang and H. Suhl, ‘Theory of auto-oscillations in high power ferromagnetic resonance,’ Phys. Rev. B, vol. 38, p. 4893, 1988.

    Article  Google Scholar 

  9. A. Prabhakar and D. D. Stancil, ‘Nonlinear microwave-magnetic resonator operated as a bistable device,’ J. Appl. Phys., vol. 85, p. 4859, 1999.

    Article  Google Scholar 

  10. Y. K. Fetisov and C. E. Patton, ‘Microwave bistability in a magnetostatic wave interferometer with external feedback,’ IEEE Trans. Mag., vol. 35, no. 2, pp. 1024–1036, Mar 1999.

    Google Scholar 

  11. H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics, 3rd ed. Cambridge, MA: Addison-Wesley, 2001.

    Google Scholar 

  12. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics. New York, NY: Wiley & Sons, 1997.

    Google Scholar 

  13. E. Schlömann, ‘Ferromagnetic resonance at high power levels,’ Raytheon Corporation, Tech. Rep., 1959.

    Google Scholar 

  14. V. S. L’vov, Turbulence Under Parametric Excitation, Applications to Magnets. Berlin: Springer-Verlag, 1994.

    MATH  Google Scholar 

  15. T. Holstein and H. Primakoff, ‘Field dependence of the intrinsic domain magnetization of a ferromagnet,’ Phys. Rev., vol. 58, no. 12, pp. 1098–1113, Dec 1940.

    Google Scholar 

  16. H. Benson and D. L. Mills, ‘Spin waves in thin films; dipolar effects,’ Phys. Rev., vol. 178, no. 2, pp. 839–847, Feb 1969.

    Google Scholar 

  17. S. M. Rezende and F. M. Aguiar, ‘Spin-wave instabilities, auto-oscillations, and chaos in yttrium-iron-garnet,’ Proc. IEEE, vol. 78, p. 893, 1990.

    Article  Google Scholar 

  18. P. Krivosik, N. Mo, S. Kalarickal, and C. E. Patton, ‘Hamiltonian formalism for two magnon scattering microwave relaxation: Theory and applications,’ J. Appl. Phys., vol. 101, p. 083901, 2007.

    Article  Google Scholar 

  19. H. Suhl, ‘Subsidiary absorption peaks in ferromagnetic resonance at high signal levels,’ Phys. Rev., vol. 101, pp. 1437–1438, 1956.

    Article  Google Scholar 

  20. P. H. Bryant, C. D. Jeffries, and K. Nakamura, ‘Spin-wave dynamics in a ferrimagnetic sphere,’ Phys. Rev. A, vol. 38, p. 4223, 1988.

    Article  Google Scholar 

  21. V. E. Zakharov, V. S. L’vov, and S. S. Starobinets, ‘Instability of monochromatic spin waves,’ Sov. Phys. Solid State, vol. 11, p. 2368, 1970.

    Google Scholar 

  22. P. Wigen, Ed., Nonlinear Phenomena and Chaos in Magnetic Materials. Singapore: World Scientific, 1994.

    Google Scholar 

  23. R. Marcelli and S. A. Nikitov, Eds., Nonlinear Microwave Signal Processing: Towards a New Range of Devices. Dordrecht: Kluwer Academic Publishers, 1996.

    Google Scholar 

  24. M. A. Tsankov, M. Chen, and C. E. Patton, ‘Forward volume wave microwave envelope solitons in yttrium iron garnet films: Propagation, decay and collision,’ J. Appl. Phys., vol. 76, p. 4274, 1994.

    Article  Google Scholar 

  25. G. P. Agrawal, Nonlinear Fiber Optics. New York, NY: Academic Press, 2006.

    Google Scholar 

  26. B. A. Kalinikos, N. G. Kovshikov, and A. N. Slavin, ‘Spin-wave solitons in ferromagnetic films: observation of a modulational instability of spin-waves during continuous excitation,’ JETP Lett, vol. 10, p. 392, 1984.

    Google Scholar 

  27. M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering. New York, NY: Cambridge University Press, 1991.

    MATH  Google Scholar 

  28. S. C. Chapra and R. P. Canale, Numerical Methods for Engineers, 5th ed. New York, NY: McGraw-Hill, 2005.

    Google Scholar 

  29. M. J. Lighthill, ‘Contributions to the theory of waves in nonlinear dispersive systems,’ J. Inst. Maths Applics., vol. 1, p. 269, 1965.

    Article  MathSciNet  Google Scholar 

  30. B. Kalinikos and A. N. Slavin, ‘Theory of dipole exchange spin-wave spectrum for ferromagnetic films with mixed exchange boundary conditions,’ J. Phys. C: Solid State Phys., vol. 19, p. 7013, 1986.

    Article  Google Scholar 

  31. A. N. Slavin, ‘Thresholds of envelope soliton formation in a weakly dissipative medium,’ Phys. Rev. Lett., vol. 77, p. 4644, 1996.

    Article  Google Scholar 

  32. R. A. Stuadinger, P. Kabos, H. Xia, B. T. Faber, and C. E. Patton, ‘Calculation of the formation time for microwave magnetic envelope solitons,’ IEEE Trans. Mag., vol. 34, p. 2334, 1998.

    Article  Google Scholar 

  33. B. A. Kalinikos, N. G. Kovshikov, and C. E. Patton, ‘Decay free microwave magnetic envelope soliton pulse trains in yttrium iron garnet thin films,’ Phys. Rev. Lett., vol. 78, no. 14, pp. 2827–2830, 1997.

    Google Scholar 

  34. B. Kalinikos, N. V. Kovshikov, and C. E. Patton, ‘Self-generation of microwave magnetic envelope soliton trains in yttrium iron garnet thin films,’ Phys. Rev. Lett., vol. 80, p. 4301, 1998.

    Article  Google Scholar 

  35. B. A. Kalinikos, N. G. Kovshikov, and C. E. Patton, ‘Excitation of bright and dark microwave magnetic envelope solitons in a resonant ring,’ Appl. Phys. Lett., vol. 75, p. 265, 1999.

    Article  Google Scholar 

  36. M. Wu, B. A. Kalinikos, L. D. Carr, and C. E. Patton, ‘Observation of spin wave soliton fractals in magnetic film active feedback rings,’ Phys. Rev. Lett., 2006.

    Google Scholar 

  37. Y. Xu, G. Su, D. Xue, H. Xing, and F. shen Li, ‘Nonlinear surface spin waves on ferromagnetic media with inhomogeneous exchange anisotropies: solitonsolutions,’ Phys. Lett. A, vol. 279, pp. 385–390, 2001.

    Google Scholar 

  38. O. Büttner, M. Bauer, S. O. Demokritov, B. Hillebrands, Y. S. Kivshar, V. Grimalsky, Y. Rapoport, M. P. Kostylev, B. A. Kalinikos, and A. N. Slavin, ‘Spatial and spatiotemporal self-focusing of spin waves in garnet films observed by space- and time-resolved brillouin light scattering,’ J. Appl. Phys., vol. 87, pp. 5088–5090, 2000.

    Article  Google Scholar 

  39. R. Gong, Y. Cheng, and H. Li, ‘Variational analysis of evolution for magnetostatic envelope bright soliton with higher-order dispersion,’ J. Magn. Magn. Matl., vol. 313, pp. 122–126, 2007.

    Article  Google Scholar 

  40. B. Kalinikos and M. P. Kostylev, ‘Parametric amplification of spin wave envelope solitons in ferromagnetic films by parallel pumping,’ IEEE Trans. Mag., vol. 33, no. 5, p. 3445, 1997.

    Google Scholar 

  41. G. Gibson and C. Jeffries, ‘Observation of period doubling and chaos in spin-wave instabilities in yttrium iron garnet,’ Phys. Rev. A, vol. 29, p. 811, 1984.

    Article  Google Scholar 

  42. R. D. McMichael and P. E. Wigen, ‘High power ferromagnetic resonance without a degenerate spin-wave manifold,’ Phys. Rev. Lett., vol. 64, p. 64, 1990.

    Article  Google Scholar 

  43. A. Borovik-Romanov and S. Sinha, Eds., Spin Waves and Magnetic Excitations. Amsterdam: North Holland Physics, 1988.

    Google Scholar 

  44. M. Cottam, Ed., Linear and Nonlinear Spin Waves in Magnetic Films and Superlattices. Singapore: World Scientific, 1994.

    Google Scholar 

  45. G. Srinivasan and A. N. Slavin, Eds., High Frequency Processes in Magnetic Materials. Singapore: World Scientific, 1995.

    Google Scholar 

  46. C. Robinson, Dynamical Systems. Boca Raton, FL CRC Press Inc., 1995.

    MATH  Google Scholar 

  47. P. Glendinning, Stability, Instability and Chaos. Cambridge CambridgeUniversity Press., 1994.

    MATH  Google Scholar 

  48. J. I. Neimark, Mathematical Models in Natural Science and Engineering. Berlin: Springer, 2003, ch. 4.

    MATH  Google Scholar 

  49. T. Y. Li and J. A. Yorke, ‘Period three implies chaos,’ Amer. Math. Monthly, vol. 82, pp. 985–992, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  50. A. Prabhakar and D. D. Stancil, ‘Variations in auto-oscillation frequency at the main resonance in rectangular YIG films,’ J. Appl. Phys., vol. 79, p. 5374, 1996.

    Article  Google Scholar 

  51. A. Prabhakar and D. D. Stancil, ‘Information dimension analysis of chaotic forward volume spin waves in a yttrium-iron-garnet thin film,’ J. Appl. Phys., vol. 87, p. 5091, 2000.

    Article  Google Scholar 

  52. R. Hegger and H. Kantz, ‘Practical implementation of nonlinear time series methods: The TISEAN package,’ Chaos, vol. 9, no. 2, pp. 413–435, 1999.

    Google Scholar 

  53. H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, and L. S. Tsimring, ‘The analysis of observed chaotic data in physical systems,’ Rev. Mod. Phys., vol. 65, no. 4, p. 1331, 1993.

    Google Scholar 

  54. M. Kennel, R. Brown, and H. D. I. Abarbanel, ‘Determining embedding dimension for phase-space reconstruction using a geometrical construction,’ Phys. Rev. A, vol. 45, p. 3403, 1992.

    Article  Google Scholar 

  55. I. Procaccia and M. Shapiro, Eds., Chaos and Related Nonlinear Phenomena. New York: Plenum, 1987, ch. Practical Considerations in estimating dimension from time series data.

    Google Scholar 

  56. J. P. Eckmann and D. Ruelle, ‘Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems,’ Physica D, vol. 56, p. 185, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  57. R. Badii and A. Politi, ‘Statistical description of chaotic attractors: the dimension function,’ J. Stat. Phys., vol. 40, p. 725, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  58. E. J. Kostelich, ‘Nearest neighbour algorithm,’ personal communication.

    Google Scholar 

  59. H. N. Bertram, V. L. Safonov, and Z. Jin, ‘Thermal magnetization noise, damping fundamentals, and mode analysis: Application to a thin film GMR sensor,’ IEEE Trans. Mag., vol. 38, pp. 2514–2519, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel D Stancil .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag US

About this chapter

Cite this chapter

Stancil, D.D., Prabhakar, A. (2009). Nonlinear Interactions. In: Spin Waves. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77865-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-77865-5_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-77864-8

  • Online ISBN: 978-0-387-77865-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics