Skip to main content

Abstract

A large portion of the carbohydrates that a plant assimilates each day are expended in respiration in the same period (Table 1). If we seek to explain the carbon balance of a plant and to understand plant performance and growth in different environments, it is imperative to obtain a good understanding of respiration. Dark respiration is needed to produce the energy and carbon skeletons to sustain plant growth; however, a significant part of respiration may proceed via a nonphosphorylating pathway that is cyanide resistant and generates less ATP than the cytochrome pathway, which is the primary energy-producing pathway in both plants and animals. We present several hypotheses in this chapter to explore why plants have a respiratory pathway that is not linked to ATP production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amthor, J.S. 2000. The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later. Ann. Bot. 86: 1–20.

    CAS  Google Scholar 

  • Andrews, D.L., Cobb, B.G., Johnson, J.R., & Drew, M.C. 1993. Hypoxic and anoxic induction of alcohol dehydrogenase in roots and shoots of seedlings of Zea mays. Adh transcripts and enzyme activity. Plant Physiol. 101: 407–414.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Armstrong, A.F., Logan, D.C., Tobin, A.K., O'Toole, P., & Atkin, O.K. 2006. Heterogeneity of plant mitochondrial responses underpinning respiratory acclimation to the cold in Arabidopsis thaliana leaves. Plant Cell Environ. 29: 940–949.

    PubMed  Google Scholar 

  • Armstrong, J., Lemos, E.E.P, Zobayed, S.M.A., Justin, S.H.F.W., & Armstrong, W. 1997. A humidity-induced convective throughflow ventilation system benefits Annona squamosa L. explants and coconut calloid. Ann. Bot. 79: 31–40.

    Google Scholar 

  • Atkin, O.K. & Tjoelker, M.G. 2003. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8: 343–351.

    CAS  PubMed  Google Scholar 

  • Atkin, O.K., Villar, R., & Lambers, H. 1995. Partitioning of electrons between the cytochrome and the alternative pathways in intact roots. Plant Physiol. 108: 1179–1183.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Atkin, O.K., Evans, J.R., Ball, M.C., Lambers, H., & Pons, T.L. 2000. Leaf respiration of snow gum in the light and dark. interactions between temperature and irradiance. Plant Physiol. 122: 915–924.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Atkin, O.K., Scheurwater, I., & Pons, T.L. 2007. Respiration as a percentage of daily photosynthesis in whole plants is homeostatic at moderate, but not high, growth temperatures. New Phytol. 174: 367–380.

    CAS  PubMed  Google Scholar 

  • Atkinson, L.J., Hellicar, M.A., Fitter, A.H., & Atkin, O.K. 2007. Impact of temperature on the relationship between respiration and nitrogen concentration in roots: an analysis of scaling relationships, Q10 values and thermal acclimation ratios. New Phytol. 173: 110–120.

    CAS  PubMed  Google Scholar 

  • Ben Zioni, A., Vaadia, Y., & Lips, S.H. 1971. Nitrate uptake by roots as regulated by nitrate reduction products of the shoot. Physiol. Plant 24: 288–290.

    CAS  Google Scholar 

  • Bigeleisen, J. & Wolfsberg, M. 1959. Theoretical and experimental aspects of isotope effects in chemical kinetics. Adv. Chem. Phys. 1: 15–76.

    Google Scholar 

  • Bingham, I.J. & Farrar, J.F. 1988. Regulation of respiration in barley roots. Physiol. Plant 73: 278–285.

    CAS  Google Scholar 

  • Blanke, M.M. & Whiley, A.W. 1995. Bioenergetics, respiration costs and water relations of developing avocado fruit. J. Plant Physiol. 145: 87–92.

    CAS  Google Scholar 

  • Blokhina, O., Virolainen, E., & Fagerstedt, K.V. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91: 179–194.

    CAS  PubMed  Google Scholar 

  • Bloom, A. & Epstein, E. 1984. Varietal differences in salt-induced respiration in barley. Plant Sci. Lett. 35: 1–3.

    CAS  Google Scholar 

  • Bloom, A.J., Caldwell, R.M., Finazzo, J., Warner, R.L., & Weissbart, J. 1989. Oxygen and carbon dioxide fluxes from barley shoots depend on nitrate assimilation. Plant Physiol. 91: 352–356.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bouma, T. 2005. Understanding plant respiration: Separating respiratory components versus a process-based approach. In: Plant respiration. From cell to ecosystem, H. Lambers & M. Ribas-Carbó (eds.). Springer, Dordrecht, pp. 177–194.

    Google Scholar 

  • Bouma, T. & De Visser, R. 1993. Energy requirements for maintenance of ion concentrations in roots. Physiol. Plant 89: 133–142.

    CAS  Google Scholar 

  • Bouma, T., De Visser, R., Janssen, J.H.J.A., De Kock, M.J., Van Leeuwen, P.H., & Lambers, H. 1994. Respiratory energy requirements and rate of protein turnover in vivo determined by the use of an inhibitor of protein synthesis and a probe to assess its effect. Physiol. Plant 92: 585–594.

    CAS  Google Scholar 

  • Bouma, T., Broekhuysen, A.G.M., & Veen, B.W. 1996. Analysis of root respiration of Solanum tuberosum as related to growth, ion uptake and maintenance of biomass: a comparison of different methods. Plant Physiol. Biochem. 34: 795–806.

    CAS  Google Scholar 

  • Bouma, T., Nielsen, K.L., Eissenstat, D.M., & Lynch, J.P. 1997. Estimating respiration of roots in soil: interactions with soil CO2, soil temperature and soil water content. Plant Soil 195: 221–232.

    CAS  Google Scholar 

  • Bruhn, D., Wiskich, J.T., & Atkin, O.K. 2007. Contrasting responses by respiration to elevated CO2 in intact tissue and isolated mitochondria. Funct. Plant Biol. 34: 112–117.

    CAS  Google Scholar 

  • Burton, A.J., Zogg, G.P., Pregitzer, K.S., & Zak, D.R. 1997. Effect of measurement CO2 concentration on sugar maple root respiration. Tree Physiol. 17: 421–427.

    CAS  PubMed  Google Scholar 

  • Bustan, A. & Goldschmidt, E.E. 1998. Estimating the cost of flowering in a grapefruit tree. Plant Cell Environ. 21: 217–224.

    Google Scholar 

  • Cannell, M.G.R. & Thornley, J.H.M. 2000. Modelling the components of plant respiration: some guiding principles. Ann. Bot. 85: 45–54.

    CAS  Google Scholar 

  • Chapin III, F.S. 1989. The costs of tundra plant structures: Evaluation of concepts and currencies. Am. Nat. 133: 1–19.

    Google Scholar 

  • Chapman, K.S.R. & Hatch, M.D. 1977. Regulation of mitochondrial NAD-malic enzyme involved in C4 pathway photosynthesis. Arch. Biochem. Biophys. 184: 298–306.

    CAS  PubMed  Google Scholar 

  • Collier, D.E., Ackermann, F., Somers, D.J., Cummins, W.R., & Atkin, O.K. 1993. The effect of aluminium exposure on root respiration in an aluminium-sensitive and an aluminium-tolerant cultivar of Triticum aestivum. Physiol. Plant. 87: 447–452.

    CAS  Google Scholar 

  • Colmer, T.D. 2003a. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Ann. Bot. 91: 301–309.

    CAS  Google Scholar 

  • Colmer, T.D. 2003b. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 26: 17–36.

    CAS  Google Scholar 

  • Considine, M.J., Daley, D.O., & Whelan, J. 2001. The expression of alternative oxidase and uncoupling protein during fruit ripening in mango. Plant Physiol. 126: 1619–1629.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Considine, M.J., Holtzapffel, R.C., Day, D.A., Whelan, J., & Millar, A.H. 2002. Molecular distinction between alternative oxidase from monocots and dicots. Plant Physiol. 129: 949–953.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Covey-Crump, E.M., Attwood, R.G., & Atkin, O.K. 2002. Regulation of root respiration in two species of Plantago that differ in relative growth rate: the effect of short- and long-term changes in temperature. Plant Cell Environ. 25: 1501–1513.

    Google Scholar 

  • Covey-Crump, E.M., Bykova, N.V., Affourtit, C., Hoefnagel, M.H.N., Gardeström, P. & Atkin, O.K. 2007. Temperature-dependent changes in respiration rates and redox poise of the ubiquinone pool in protoplasts and isolated mitochondria of potato leaves. Physiol. Plant 129: 175–184.

    CAS  Google Scholar 

  • Criddle, R.S., Hopkin, M.S., McArthur, E.D., & Hansen, L.D. 1994. Plant distribution and the temperature coefficient of metabolism. Plant Cell Environ. 17: 233–243.

    Google Scholar 

  • Dacey, J.W.A. 1980. Internal winds in water lilies: an adaptation for life in anaerobic sediments. Science 210: 1017–1019.

    CAS  PubMed  Google Scholar 

  • Dacey, J.W.A. 1987. Knudsen-transitional flow and gas pressurization in leaves of Nelumbo. Plant Physiol. 85: 199–203.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davey, P.A., Hunt, S., Hymus, G.J., DeLucia, E.H., Drake, B.G., Karnosky, D.F., & Long, S.P. 2004. Respiratory oxygen uptake is not decreased by an instantaneous elevation of [CO2], but is increased with long-term growth in the field at elevated [CO2]. Plant Physiol 134: 520–527.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davies, D.D. 1979. Factors affecting protein turnover in plants. In: Nitrogen assimilation of plants, E.J. Hewitt & C.V. Cutting (eds.). Academic Press, London, pp. 369–396.

    Google Scholar 

  • Day, D.A., Whelan, J., Millar, A.H., Siedow, J.N., & Wiskich, J.T. 1995. Regulation of the alternative oxidase in plants and fungi. Aust. J. Plant Physiol. 22: 497–509.

    CAS  Google Scholar 

  • Day, D.A., Krab, K., Lambers, H., Moore, A.L., Siedow, J.N., Wagner, A.M., & Wiskich, J.T. 1996. The cyanide-resistant oxidase: to inhibit or not to inhibit, that is the question. Plant Physiol. 110: 1–2.

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Boer, A.H. & Wegner, L.H. 1997. Regulatory mechanisms of ion channels in xylem parenchyma cells. J. Exp. Bot. 48: 441–449.

    PubMed  Google Scholar 

  • De Jong, T.M. & Walton, E.F. 1989. Carbohydrate requirements of peach fruits, growth and respiration. Tree Physiol. 5: 329–335.

    Google Scholar 

  • De Visser, R., Spitters, C.J.T., & Bouma, T. 1992. Energy costs of protein turnover: theoretical calculation and experimental estimation from regression of respiration on protein concentration of full-grown leaves. In: Molecular, biochemical and physiological aspects of plant respiration, H. Lambers & L.H.W. Van der Plas (eds.). SPB Academic Publishing, The Hague, pp. 493–508.

    Google Scholar 

  • Dry, I.B., Moore, A.L., Day. D.A., & Wiskich, J.T. 1989. Regulation of alternative pathway activity in plant mitochondria. Non-linear relationship between electron flux and the redox poise of the quinone pool. Arch. Biochem. Biophys. 273: 148–157.

    CAS  PubMed  Google Scholar 

  • Dueck, T.A., De Visser, R., Poorter, H., Persijn, S., Gorissen, A., de Visser, W., Schapendonk, A., Verhagen, J., Snel, J., Harren, F.J.M., Ngai, A.K.Y., Verstappen, F., Bouwmeester, H., Voesenek, L.A.C.J., & Van der Werf, A. 2007. No evidence for substantial aerobic methane emission by terrestrial plants: a 13Clabelling approach. New Phytol. 175: 29–35.

    CAS  PubMed  Google Scholar 

  • Escobar, M.A., Geisler, D.A., & Rasmusson, A.G. 2006. Reorganization of the alternative pathways of the Arabidopsis respiratory chain by nitrogen supply: opposing effects of ammonium and nitrate. Plant J. 45: 775–788.

    CAS  PubMed  Google Scholar 

  • Evans, L.T. 1980. The natural history of crop yield. Am. Sci. 68: 388–397.

    Google Scholar 

  • Farrar, J.F. & Rayns, F.W. 1987. Respiration of leaves of barley infected with powdery mildew: increased engagement of the alternative oxidase. New Phytol. 107: 119–125.

    CAS  Google Scholar 

  • Florez-Sarasa, I.D., Bouma, T.J., Medrano, H., Azcón-Bieto, J. & Ribas-Carbó, M. 2007. Contribution of the cytochrome and alternative pathways to growth respiration and maintenance respiration in Arabidopsis thaliana. Physiol. Plant. 129: 143–151.

    CAS  Google Scholar 

  • Foyer, C.H. & Noctor, G. 2000. Oxygen processing in photosynthesis: regulation and signalling. New Phytol. 146: 359–388.

    CAS  Google Scholar 

  • Fredeen, A.L. & Field, C.B. 1991. Leaf respiration in Piper species native to a Mexican rainforest. Physiol. Plant. 82: 85–92.

    Google Scholar 

  • Galmés, J., Ribas-Carbó, M., Medrano, H., & Flexas, J. 2007. Response of leaf respiration to water stress in Mediterranean species with different growth forms. J. Arid Environ. 68: 206–222.

    Google Scholar 

  • Gomez-Casanovas, N., Blanc-Betes, E., Gonzàlez-Meler, M.A., & Azcón-Bieto, J. 2007. Changes in respiratory mitochondrial machinery and cytochrome and alternative pathway activities in response to energy demand underlie the acclimation of respiration to elevated CO2 in the invasive Opuntia ficus-indica. Plant Physiol. 145: 49–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzàlez-Meler, Ribas-Carbó, M., Siedow, J.N., & Drake, B.G. 1996. Direct inhibition of plant respiration by elevated CO2. Plant Physiol. 112: 1349–1355.

    PubMed Central  PubMed  Google Scholar 

  • Gonzàlez-Meler, Ribas-Carbó, M., Giles, L., & Siedow, J.N. 1999. The effect of growth and measurement temperature on the activity of the alternative respiratory pathway. Plant Physiol. 120: 765–772.

    PubMed Central  PubMed  Google Scholar 

  • Good, B.J. & Patrick, W.H. 1987. Gas composition and respiration of water oak (Quercus nigra L.) and green ash (Fraxinus pennsylvanica Marsh.) roots after prolonged flooding. Plant Soil 97: 419–427.

    CAS  Google Scholar 

  • Griffin, K.L., Anderson, O.R., Gastrich, M.D., Lewis, J.D., Lin, G., Schuster, W., Seemann, J.R., Tissue, D.T., Turnbull, M.H., & Whitehead, D. 2001. Plant growth in elevated CO2 alters mitochondrial number and chloroplast fine structure. Proc. Natl. Acad. Sci. USA 98: 2473–2478.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guy, R.D., Berry, J.A., Fogel, M.L., & Hoering, T.C. 1989. Differential fractionation of oxygen isotopes by cyanide-resistant and cyanide-sensitive respiration in plants. Planta 177: 483–491.

    CAS  PubMed  Google Scholar 

  • Hagesawa, R., Muruyama, A., Nakaya, M., & Esashi, Y. 1995. The presence of two types of β-cyanoalanine synthase in germinating seeds and their response to ethylene. Physiol. Plant. 93: 713–718.

    Google Scholar 

  • Henry, B.K., Atkin, O.K., Farquhar, G.D., Day, D.A., Millar, A.H., & Menz, R.I. 1999. Calculation of the oxygen isotope discrimination factor for studying plant respiration. Aust. J. Plant Physiol. 26: 773–780.

    Google Scholar 

  • Hoefnagel, M.H.N. & Wiskich, J.T. 1998. Activation of the plant alternative oxidase by high reduction levels of the Q-pool and pyruvate. Arch. Biochem. Biophys. 355: 262–270.

    CAS  PubMed  Google Scholar 

  • Hoefnagel, M.H.N., Millar, A.H., Wiskich, J.T., & Day, D.A. 1995. Cytochrome and alternative respiratory pathways compete for electrons in the presence of pyruvate in soybean mitochondria. Arch. Biochem. Biophys. 318: 394–400.

    CAS  PubMed  Google Scholar 

  • Hoefnagel, M.H.N., Rich, P.R., Zhang, Q., & Wiskich, J.T. 1997. Substrate kinetics of the plant mitochondrial alternative oxidase and the effects of pyruvate. Plant Physiol. 115: 1145–1153.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoefs, J. 1987. Stable isotope geochemistry. Springer-Verlag, Berlin.

    Google Scholar 

  • Hourton-Cabassa, C., Matos, A.R., Zachowski, A., & Moreau, F. 2004. The plant uncoupling protein homologues: a new family of energy-dissipating proteins in plant mitochondria. Plant Physiol. Biochem. 42: 283–290.

    CAS  PubMed  Google Scholar 

  • Jackson, M.B. & Armstrong, W. 1999. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol. 1: 274–287.

    CAS  Google Scholar 

  • Jackson, M.B., Herman, B., & Goodenough, A. 1982. An examination of the importance of ethanol in causing injury to flooded plants. Plant Cell Environ. 5: 163–172.

    CAS  Google Scholar 

  • Jahnke, S. & Krewitt, M. 2002. Atmospheric CO2 concentration may directly affect leaf respiration measurement in tobacco, but not respiration itself. Plant Cell Environ. 25: 641–651.

    CAS  Google Scholar 

  • Karpova, O.V., Kuzmin, E.V., Elthon, T.E., & Newton and K.J. 2002. Differential expression of alternative oxidase genes in maize mitochondrial mutants. Plant Cell 14: 3271–3284.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirschbaum, M.U.F., Niinemets, Ãœ., Bruhn, D., & Winters, A.J. 2007. How important is aerobic methane release by plants? Funct. Plant Sci. Biotechnol. 1: 138–145.

    Google Scholar 

  • Körner, C. & Larcher, W. 1988. Plant life in cold environments. In: Plants and temperature. Symposium of the Society of Experimental Biology, Vol. 42, S.P. Long & F.I. Woodward (eds.). The Company of Biologists, Cambridge, pp. 25–57.

    Google Scholar 

  • Knutson, R. M. 1974. Heat production and temperature regulation in eastern skunk cabbage. Science 186: 746–747.

    CAS  PubMed  Google Scholar 

  • Krapp, A. & Stitt, M. 1994. Influence of high carbohydrate content on the activity of plastidic and cytosolic isozyme pairs in photosynthetic tissues. Plant Cell Environ. 17: 861–866.

    CAS  Google Scholar 

  • Kurimoto, K., Day, D.A., Lambers, H. & Noguchi, K. 2004a. Effect of respiratory homeostasis on plant growth in cultivars of wheat and rice. Plant Cell Environ. 27: 853–862.

    Google Scholar 

  • Kurimoto, K., Millar, A.H., Lambers, H., Day, D.A., Noguchi, K. 2004b. Maintenance of growth rate at low temperature in rice and wheat cultivars with a high degree of respiratory homeostasis is associated with a high efficiency of respiratory ATP production. Plant Cell Physiol. 45: 1015–1022.

    CAS  Google Scholar 

  • Lambers, H. 1982. Cyanide-resistant respiration: A non-phosphorylating electron transport pathway acting as an energy overflow. Physiol. Plant. 55: 478–485.

    CAS  Google Scholar 

  • Lambers, H. & Ribas-Carbó, M. (eds.). 2005. Plant respiration. From cell to ecosystem. Springer, Dordrecht.

    Google Scholar 

  • Lambers, H. & Van der Werf, A. 1988. Variation in the rate of root respiration of two Carex species: A comparison of four related methods to determine the energy requirements for growth, maintenance and ion uptake. Plant Soil 111: 207–211.

    CAS  Google Scholar 

  • Lambers, H., Blacquière, T., & Stuiver, C.E.E. 1981. Interactions between osmoregulation and the alternative respiratory pathway in Plantago coronopus as affected by salinity. Physiol. Plant. 51: 63–68.

    CAS  Google Scholar 

  • Lambers, H., Day, D.A., & Azcón-Bieto, J. 1983. Cyanide-resistant respiration in roots and leaves. Measurements with intact tissues and isolated mitochondria. Physiol. Plant. 58: 148–154.

    CAS  Google Scholar 

  • Lambers, H., Atkin, O.K. & Millenaar, F.F. 2002. Respiratory patterns in roots in relation to their functioning. In: Plant roots: the hidden half, 3rd edition, Y. Waisel, A. Eshel, & U. Kafkaki (eds.). Marcel Dekker, Inc. New York, pp. 521–552.

    Google Scholar 

  • Larigauderie, A. & Körner, C. 1995. Acclimation of dark leaf respiration to temperature in alpine and lowland plant species. Ann. Bot. 76: 245–252.

    Google Scholar 

  • Laties, G.G. 1998. The discovery of the cyanide-resistant alternative path: and its aftermath. In: Discoveries in plant biology, S.-Y. Yang & S.-D. Kung (eds.). World Scientific Publishing Co., Hong Kong. pp. 233–256.

    Google Scholar 

  • Loveys, B.R., Atkinson, L.J., Sherlock, D.J., Roberts, R.L., Fitter, A.H., & Atkin, OK 2003. Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow-growing plant species. Global Change Biol. 9: 895–910.

    Google Scholar 

  • Mariotti, A., Germon, J.C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A., & Tardieux, P. 1981. Experimental determination of nitrogen kinetic isotope fractionation: Some principles; Illustration for the denitrification and nitrification processes. Plant Soil 62: 413–430.

    CAS  Google Scholar 

  • Mata, C., Scheurwater, I., Martins-Louçao, M.-A., & Lambers, H. 1996. Root respiration, growth and nitrogen uptake of Quercus suber L. seedlings. Plant Physiol. Biochem. 34: 727–734.

    CAS  Google Scholar 

  • McDermitt, D.K. & Loomis, R.S. 1981. Elemental composition of biomass and its relation to energy content, growth efficiency and growth yield. Ann. Bot. 48: 275–290.

    CAS  Google Scholar 

  • McDonnel, E. & Farrar, J.F. 1992. Substrate supply and its effect on mitochondrial and whole tissue respiration in barley roots. In: Molecular, biochemical and physiological aspects plant respiration, H. Lambers & L.H.W. Van der Plas (eds.). SPB Academic Publishing, The Hague, pp. 455–462.

    Google Scholar 

  • McIntosh, L. 1994. Molecular biology of the alternative oxidase. Plant Physiol. 105: 781–786.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Millar, A.H. & Day, D.A. 1997. Nitric oxide inhibits the cytochrome oxidase but not the alternative oxidase of plant mitochondria. FEBS Lett. 398: 155–158.

    Google Scholar 

  • Millar, A.H., Hoefnagel, M.H.N., Day, D.A., & Wiskich, J.T. 1996. Specificity of the organic acid activation of the alternative oxidase in plant mitochondria. Plant Physiol. 111: 613–618.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Millar, A.H., Atkin, O.K., Menz, R.I., Henry, B., Farquhar, G., & Day, D.A. 1998. Analysis of respiratory chain regulation in roots of soybean seedlings. Plant Physiol. 117: 1083–1093.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Millenaar, F.F. & Lambers, H. 2003. The alternative oxidase; in vivo regulation and function. Plant Biol. 5: 2–15.

    CAS  Google Scholar 

  • Millenaar, F.F., Benschop, J. Wagner, A.M., & Lambers, H. 1998. The role of the alternative oxidase in stabilizing the in vivo reduction state of the ubiquinone pool; and the activation state of the alternative oxidase. Plant Physiol. 118: 599–607.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Millenaar, F.F., Roelofs, R., Gonzàlez-Meler, M.A., Siedow, J.N. Wagner, A.M. & Lambers, H. 2000. The alternative oxidase in roots of Poa annua after transfer from high-light to low-light conditions. Plant J. 23: 623–632.

    CAS  PubMed  Google Scholar 

  • Millenaar, F.F., Gonzàlez-Meler, M., Fiorani, F., Welschen, R., Ribas-Carbó, M., Siedow, J.N., Wagner, A.M. & Lambers, H. 2001. Regulation of alternative oxidase activity in six wild monocotyledonous species; an in vivo study at the whole root level. Plant Physiol. 126: 376–387.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller, P.C. & Stoner, W.A. 1979. Canopy structure and environmental interactions. In: Topics in plant population biology, O.T. Solbrig, S. Jain, G.B. Johnson, & P.H Raven (eds.). Columbia University Press, New York, pp. 428–458.

    Google Scholar 

  • Mitchell, P. 1966. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 41: 445–502.

    CAS  PubMed  Google Scholar 

  • Møller, I.M. 2001 Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 561–591.

    PubMed  Google Scholar 

  • Moynihan, M.R., Ordentlich, A., & Raskin, I. 1995. Chilling-induced heat evolution in plants. Plant Physiol. 108: 995–999.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neuberger, M. & Douce, R. 1980. Effect of bicarbonate and oxaloacetate on malate oxidation by spinach leaf mitochondria. Biochim. Biophys. Acta 589: 176–189.

    Google Scholar 

  • Nicholls, D.G. & Ferguson, S.J. 1992. Bioenergetics 2. Academic Press, London.

    Google Scholar 

  • Nobel, P.S. & Palta, J.A. 1989. Soil O2 and CO2 effects on root respiration of cacti. Plant Soil 120: 263–271.

    CAS  Google Scholar 

  • Noguchi, K. & Terashima, I. 2006. Responses of spinach leaf mitochondria to low N availability. Plant Cell Environ. 29: 710–719.

    CAS  PubMed  Google Scholar 

  • Noguchi, K., Sonoike, K., & Terashima, I. 1996. Acclimation of respiratory properties of leaves of Spinacia oleracea (L.), a sun species, and of Alocasia macrorrhiza (L.) G. Don., a shade species, to changes in growth irradiance. Plant Cell Physiol. 37: 377–384.

    CAS  Google Scholar 

  • Noguchi, K., Nakajima, N., & Terashima, I. 2001a. Acclimation of leaf respiratory properties in Alocasia odora following reciprocal transfers of plants between high- and low-light environments. Plant Cell Environ. 24: 831–839.

    CAS  Google Scholar 

  • Noguchi, K., Go, C.-S., Terashima, I., Ueda, S., Yoshinari, T. 2001b. Activities of the cyanide-resistant respiratory pathway in leaves of sun and shade species. Funct. Plant Biol. 28: 27–35.

    CAS  Google Scholar 

  • Noguchi, K., Go, C.-S., Miyazawa, S.-I., Terashima, I., Ueda, S., Yoshinari, T. 2001c. Costs of protein turnover and carbohydrate export in leaves of sun and shade species. Funct. Plant Biol. 28: 37–47.

    CAS  Google Scholar 

  • Noguchi, K., Taylor, N.L., Millar, A.H., Lambers, H., & Day, D.A. 2005. Responses of mitochondria to light intensity in the leaves of sun and shade species. Plant Cell Environ. 28: 760–771.

    CAS  Google Scholar 

  • Overmyer, K., Brosche, M., & Kangasjarvi, J. 2003. Reactive oxygen species and hormonal control of cell death. Trends Plant Sci. 8: 335–342.

    CAS  PubMed  Google Scholar 

  • Ögren, E. 1996. Premature dehardening in Vaccinium myrtillus during a mild winter: a cause for winter dieback? Funct. Ecol. 10: 724–732.

    Google Scholar 

  • Ögren, E. 2001. Effects of climatic warming on cold hardiness of some northern woody plants assessed from simulation experiments. Physiol. Plant. 112: 71–77.

    PubMed  Google Scholar 

  • Palet, A., Ribas-Carbó, M., Argiles, J.M., & Azcón-Bieto, J. 1991. Short-term effects of carbon dioxide on carnation callus cell respiration. Plant Physiol. 96: 467–472.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palet, A., Ribas-Carbó, M., Gonzàlez-Meler, M.A., Aranda, X., & Azcón-Bieto, J. 1992. Short-term effects of CO2/bicarbonate on plant respiration. In: Molecular, biochemical and physiological aspects of plant respiration, H. Lambers & L.H.W. Van der Plas (eds.). SPB Academic Publishing, The Hague, pp. 597–602.

    Google Scholar 

  • Penning de Vries, F.W.T. 1975. The cost of maintenance processes in plant cells. Ann. Bot. 39: 77–92.

    CAS  Google Scholar 

  • Penning de Vries, F.W.T., Brunsting, A.H.M., & Van Laar, H.H. 1974. Products, requirements and efficiency of biosynthesis: a quantitative approach. J. Theor. Biol. 45: 339–377.

    CAS  PubMed  Google Scholar 

  • Perata, P. & Alpi, A. 1993. Plant responses to anaerobiosis. Plant Sci. 93: 1–17.

    CAS  Google Scholar 

  • Perata, P., Geshi, N., Yamaguchi, J, & Akazawa, T. 1992. Effect of anoxia on the induction of α-amylase in cereal seeds. Planta 191: 402–408.

    Google Scholar 

  • Perata, P., Guglielminetti, L., & Alpi, A. 1996. Anaerobic carbohydrate metabolism in wheat and barley, two anoxia-intolerant cereal seeds. J. Exp. Bot. 47: 999–1006.

    CAS  Google Scholar 

  • Plaxton, W.C. & Podestá, F.E. 2006. The functional organization and control of plant respiration. Crit. Rev. Plant Sci. 25: 159–198.

    CAS  Google Scholar 

  • Poorter, H. 1994. Construction costs and payback time of biomass: A whole plant perspective. In: A whole plant perspective on carbon-nitrogen interactions, J. Roy & E. Garnier (eds.). SPB Academic Publishing, The Hague, pp. 111–127.

    Google Scholar 

  • Poorter, H. & Villar, R. 1997. Chemical composition of plants: Causes and consequences of variation in allocation of C to different plant compounds. In: Resource allocation in plants, Physiological ecology series, F. Bazzaz & J. Grace (eds.). Academic Press, San Diego, pp. 39–72.

    Google Scholar 

  • Poorter, H., Van der Werf, A., Atkin, O.K., & Lambers, H. 1991. Respiratory energy requirements of roots vary with the potential growth rate of a plant species. Physiol. Plant 83: 469–475.

    Google Scholar 

  • Poorter, H., Van de Vijver, C.A.D.M., Boot, R.G.A., & Lambers, H. 1995. Growth and carbon economy of a fast-growing and a slow-growing grass species as dependent on nitrate supply. Plant Soil 171: 217–227.

    CAS  Google Scholar 

  • Purvis, A.C. & Shewfelt, R.L. 1993. Does the alternative pathway ameliorate chilling injury in sensitive plant tissues? Physiol. Plant 88: 712–718.

    CAS  Google Scholar 

  • Qi, J., Marshall, J.D., & Mattson, K.G. 1994. High soil carbon dioxide concentrations inhibit root respiration of Douglas fir. New Phytol. 128: 435–442.

    Google Scholar 

  • Rachmilevitch, S., Lambers, H., & Huang, B. 2006. Root respiratory characteristics associated with plant adaptation to high soil temperature for geothermal and turf-type Agrostis species. J. Exp. Bot. 57: 623–631.

    CAS  PubMed  Google Scholar 

  • Ramaswamy, V., Boucher, O., Haigh, J., Hauglustaine, D., Haywood, J., Myhre, G., Nakajima, T., Shi, G.Y., & Solomon, S. 2001. Radiative forcing of climate change. In: Climate change 2001: the scientific basis, contribution of working group I to the third assessment report of the intergovernmental panel on climate change, J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. Van der Linden, X. Dai, K. Maskell, & C.A. Johnson (eds.). Cambridge University Press, Cambridge, pp. 349–416.

    Google Scholar 

  • Raskin, I., Turner, I.M., & Melander, W.R. 1989. Regulation of heat production in the inflorescence of an Arum lily by endogenous salicylic acid. Proc. Natl. Acad. Sci. USA 86: 2214–2218.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rasmusson, A.G., Soole, K.L., & Elthon, T.E. 2004. Alternative NAD(P)H dehydrogenases of plant mitochondria. Annu. Rev. Plant Biol. 55: 23–39.

    CAS  PubMed  Google Scholar 

  • Reich, P.B., Walters, M.B., Tjoelker, M.G., Vanderklein, D., & Buschena, C. 1998. Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Funct. Ecol. 12: 395–405.

    Google Scholar 

  • Reich, P.B., Tjoelker, M.G., Machado, J.-L., & Oleksyn, J. 2006. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439: 457–461.

    CAS  PubMed  Google Scholar 

  • Rennenberg, H. & Filner, P. 1983. Developmental changes in the potential for H2S emission in cucurbit plants. Plant Physiol. 71: 269–275.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rhoads, D.M., Umbach, A.L., Subbaiah, C.C., & Siedow, J.N. 2006. Mitochondria reactive oxygen species. Contribution of oxidative stress and interorganeller signaling. Plant Physiol. 141: 357–366.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ribas-Carbó, M., Berry, J.A., Yakir, D., Giles, L., Robinson, S.A., Lennon, A.M., & Siedow, J.N. 1995. Electron partitioning between the cytochrome and alternative pathways in plant mitochondria. Plant Physiol. 109: 829–837.

    PubMed Central  PubMed  Google Scholar 

  • Ribas-Carbó, M., Lennon, A.M., Robinson, S.A., Giles, L., Berry, J., & Siedow, J.N. 1997. The regulation of the electron partitioning between the cytochrome and alternative pathways in soybean cotyledon and root mitochondria. Plant Physiol. 113: 903–911.

    PubMed Central  PubMed  Google Scholar 

  • Ribas-Carbó, M., Taylor, N.L., Giles, L., Busquets, S, Finnegan, P., Day, D., Lambers, H. Medrano, H., Berry, J.A., & Flexas, J. 2005a. Effects of water stress on respiration in soybean (Glycine max. L.) leaves. Plant Physiol. 139: 466–473.

    Google Scholar 

  • Ribas-Carbó, M., Robinson, S.A., & Giles, L. 2005b. The application of the oxygen-isotope technique to assess respiratory pathway partitioning. In: Plant respiration. From cell to ecosystem, H. Lambers & M. Ribas-Carbó (eds.). Springer, Dordrecht, pp. 177–194.

    Google Scholar 

  • Richter, D.D. & Markewitz, D. 1995. How deep is soil? BioScience 45: 600–609.

    Google Scholar 

  • Rivoal, J. & Hanson, A.D. 1993. Evidence for a large and sustained glycolytic flux to lactate in anoxic roots of some members of the halophytic genus Limonium. Plant Physiol. 101: 553–560.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rivoal, J. & Hanson, A.D. 1994. Metabolic control of anaerobic glycolysis. Overexpression of lactate dehydrogenase in transgenic tomato roots supports the Davies-Roberts hypothesis and points to a critical role for lactate secretion. Plant Physiol. 106: 1179–1185.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts, J.K.M. 1984. Study of plant metabolism in vivo using NMR spectroscopy. Annu. Rev. Plant Physiol. 35: 375–386.

    CAS  Google Scholar 

  • Roberts, J.K.M., Wemmer, D., & Jardetzky, O. 1984a. Measurements of mitochondrial ATP-ase activity in maize root tips by saturation transfer 31P nuclear magnetic resonance. Plant Physiol. 74: 632–639.

    CAS  Google Scholar 

  • Roberts, J.K.M., Callis, J., Jardetzky, O., Walbot, V., & Freeling, M. 1984b. Cytoplasmic acidosis as a determinant of flooding intolerance in plants. Proc. Natl. Acad. Sci. USA 81: 6029–6033.

    CAS  Google Scholar 

  • Roberts, J.K.M., Andrade, JH., & Anderson, I.C. 1985. Further evidence that cytoplasmic acidosis is a determinant of flooding intolerance in plants. Plant Physiol. 77: 492–494.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robinson, S.A., Yakir, D., Ribas-Carbó, M., Giles, L. Osmond, C.B., Siedow, J.N., & Berry, J.A. 1992. Measurements of the engagement of cyanide-resistant respiration in the crassulacean acid metabolism plant Kalanchoë daigremontiana with the use of on-line oxygen isotope discrimination. Plant Physiol. 100: 1087–1091.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robinson, S.A., Ribas-Carbó, M., Yakir, D., Giles, L., Reuveni, Y., & Berry, J.A. 1995. Beyond SHAM and cyanide: opportunities for studying the alternative oxidase in plant respiration using oxygen isotope discrimination. Aust. J. Plant Physiol. 22: 487–496.

    CAS  Google Scholar 

  • Ryan, M.G. 1995. Foliar maintenance respiration of subalpine and boreal trees and shrubs in relation to nitrogen content. Plant Cell Environ. 18: 765–772.

    CAS  Google Scholar 

  • Ryan, M.G. & Waring, R.H. 1992. Maintenance respiration and stand development in a subalpine lodgepole pine forest. Ecology 73: 2100–2108.

    Google Scholar 

  • Ryan, M.G., Linder, S., Vose, J.M., & Hubbard, R.M. 1994. Dark respiration of pines. Ecol. Bull. 43: 50–63.

    Google Scholar 

  • Ryan, M.G., Binkley, D., & Fownes, J.H. 1997. Age-related decline in forest productivity: pattern and process. Adv. Ecol. Res. 27: 213–262.

    Google Scholar 

  • Schaaf, J., Walter, M.H., & Hess, D. 1995. Primary metabolism in plant defense. Regulation of bean malic enzyme gene promoter in transgenic tobacco by development and environmental cues. Plant Physiol. 108: 949–960.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scheurwater, I., Cornelissen, C., Dictus, F. Welschen, R., & Lambers, H. 1998. Why do fast- and slow-growing grass species differ so little in their rate of root respiration, considering the large differences in rate of growth and ion uptake? Plant Cell Environ. 21: 995–1005.

    Google Scholar 

  • Scheurwater, I., Clarkson, D.T., Purves, J.V., Van Rijt, G., Saker, L.R., Welschen, R., & Lambers, H. 1999. Relatively large nitrate efflux can account for the high specific respiratory costs for nitrate transport in slow-growing grass species. Plant Soil 215: 123–134.

    CAS  Google Scholar 

  • Scheurwater, I., Dünnebacke, M., Eising, R. & Lambers, H. 2000. Respiratory costs and rate of protein turnover in the roots of a fast-growing (Dactylis glomerata L.) and a slow-growing (Festuca ovina L.) grass species. J. Exp. Bot. 51: 1089–1097.

    CAS  PubMed  Google Scholar 

  • Scheurwater, I., Koren, M., Lambers, H., & Atkin, O.K. 2002. The contribution of roots and shoots to whole plant nitrate reduction in fast- and slow-growing grass species. J. Exp. Bot. 53: 1635–1642.

    CAS  PubMed  Google Scholar 

  • Schubert, S., Schubert, E., & Mengel, K. 1990. Effect of low pH of the root medium on proton release, growth, and nutrient uptake of field beans (Vicia faba). Plant Soil 124: 239–244.

    CAS  Google Scholar 

  • Seymour, R.S. 2001. Biophysics and physiology of temperature regulation in thermogenic flowers. Biosci. Rep. 21: 223–236.

    CAS  PubMed  Google Scholar 

  • Seymour, R.S. & Schultze-Motel, P. 1996. Thermoregulating lotus flowers. Nature 383: 305.

    CAS  Google Scholar 

  • Seymour, R.S., Schultze-Motel, P., & Lamprecht, I. 1998. Heat production by sacred lotus flowers depends on ambient temperature, not light cycle. J. Exp. Bot. 49: 1213–1217.

    CAS  Google Scholar 

  • Shane, M.W., Cramer, M.D., Funayama-Noguchi, S., Millar, A.H., Day, D.A., & Lambers, H. 2004. Developmental physiology of cluster-root carboxylate synthesis and exudation in harsh hakea: expression of phosphoenolpyruvate carboxylase and the alternative oxidase. Plant Physiol. 135: 549–560.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shaw, M. & Samborski, D.J. 1957. The physiology of host-parasite relations. III. The pattern of respiration in rusted and mildewed cereal leaves. Can. J. Bot. 35: 389–407.

    Google Scholar 

  • Simons, B.H. & Lambers, H. 1999. The alternative oxidase: is it a respiratory pathway allowing a plant to cope with stress? In: Plant responses to environmental stresses: fom phytohormones to genome reorganization, H.R. Lerner (ed.). Plenum Press, New York, pp. 265–286.

    Google Scholar 

  • Simons, B.H., Millenaar, F.F., Mulder, L., Van Loon, L.C., & Lambers, H. 1999. Enhanced expression and activation of the alternative oxidase during infection of Arabidopsis with Pseudomonas syringae pv. tomato. Plant Physiol. 120: 529–538.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soukup, A., Armstrong, W. Schreiber, L., Franke, R., Votrubová, O. 2007. Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima. New Phytol. 173: 264–278.

    CAS  PubMed  Google Scholar 

  • Stewart, C.R., Martin, B.A., Reding, L., & Cerwick, S. 1990. Respiration and alternative oxidase in corn seedlings tissues during germination at different temperatures. Plant Physiol. 92: 755–760.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stiles, W. & Leach, W. 1936. Respiration in plants. Methuen & Co., London.

    Google Scholar 

  • Tan, K. & Keltjens, W.G. 1990a. Interaction between aluminium and phosphorus in sorghum plants. I. Studies with the aluminium sensitive sorghum genotype TAM428. Plant Soil 124: 15–23.

    CAS  Google Scholar 

  • Tan, K. & Keltjens, W.G. 1990b. Interaction between aluminium and phosphorus in sorghum plants. II. Studies with the aluminium tolerant sorghum genotype SC0 283. Plant Soil 124: 25–32.

    CAS  Google Scholar 

  • Tcherkez, G., Nogués, S., Bleton, J., Cornic, G., Badeck, F., & Ghashghaie, J. 2003. Metabolic origin of carbon isotope composition of leaf dark-respired CO2 in French bean. Plant Physiol. 131: 237–244.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tcherkez, G., Cornic, G., Bligny, R., Gout, E., & Ghashghaie, J. 2005. In vivo respiratory metabolism of illuminated leaves. Plant Physiol. 138: 1596–1606.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Torn, M.S. & Chapin III, F.S. 1993. Environmental and biotic controls over methane flux from arctic tundra. Chemosphere 26: 357–368.

    CAS  Google Scholar 

  • Tjoelker, M.G., Reich, P.B., & Oleksyn, J. 1999. Changes in leaf nitrogen and carbohydrates underlie temperature and CO2 acclimation of dark respiration in five boreal tree species. Plant Cell Environ. 22: 767–778.

    Google Scholar 

  • Uemura, S., Ohkawara, K., Kudo, G., Wada, N., & Higashi, S. 1993. Heat-production and cross-pollination of the Asian skunk cabbage Symplocarpus renifolius (Araceae). Am. J. Bot. 80: 635–640.

    Google Scholar 

  • Umbach, A.L., Wiskich, J.T., & Siedow, J.N. 1994. Regulation of alternative oxidase kinetics by pyruvate and intermolecular disulfide bond redox status in soybean seedling mitochondria. FEBS Lett. 348: 181–184.

    CAS  PubMed  Google Scholar 

  • Van der Werf, A., Kooijman, A., Welschen, R., & Lambers, H. 1988. Respiratory costs for the maintenance of biomass, for growth and for ion uptake in roots of Carex diandra and Carex acutiformis. Physiol. Plant 72: 483–491.

    Google Scholar 

  • Van der Werf, A., Welschen, R., & Lambers, H. 1992a. Respiratory losses increase with decreasing inherent growth rate of a species and with decreasing nitrate supply: a search for explanations for these observations. In: Molecular, biochemical and physiological aspects of plant respiration, H. Lambers & L.H.W. Van der Plas (eds.). SPB Academic Publishing, The Hague, pp. 421–432.

    Google Scholar 

  • Van der Werf, A., Van den Berg, G., Ravenstein, H.J.L., Lambers, H., & Eising, R. 1992b. Protein turnover: A significant component of maintenance respiration in roots? In: Molecular, biochemical and physiological aspects of plant respiration, H. Lambers & L.H.W. Van der Plas (eds.). SPB Academic Publishing, The Hague, pp. 483–492.

    Google Scholar 

  • Van der Werf, A., Poorter, H., & Lambers, H. 1994. Respiration as dependent on a species' inherent growth rate and on the nitrogen supply to the plant. In: A whole-plant perspective of carbon-nitrogen interactions, J. Roy & E. Garnier (eds.). SPB Academic Publishing, The Hague, pp. 61–77.

    Google Scholar 

  • Vani, T. & Raghavendra, S. 1994. High mitochondrial activity but incomplete engagement of the cyanide-resistant alternative pathway in guard cell protoplasts of pea. Plant Physiol. 105: 1263–1268.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vanlerberghe, G.C. & McIntosh, L. 1992. Lower growth temperature increases alternative pathway capacity and alternative oxidase protein in tobacco callus. Plant Physiol. 100: 115–119.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vanlerberghe, G.C., Day, D.A., Wiskich, J.T., Vanlerberghe, A.E., & McIntosh, L. 1995. Alternative oxidase activity in tobacco leaf mitochondria. Dependence on tricarboxylic acid cycle-mediated redox regulation and pyruvate activation. Plant Physiol. 109: 353–361.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Veen, B.W. 1980. Energy costs of ion transport. In: Genetic engeneering of osmoregulation. Impact on plant productivity for food, chemicals and energy, D.W. Rains, R.C. Valentine & C. Holaender (eds.). Plenum Press, New York, pp. 187–195.

    Google Scholar 

  • Vertregt, N. & Penning de Vries, F.W.T. 1987. A rapid method for determining the efficiency of biosynthesis of plant biomass. J. Theor. Biol. 128: 109–119.

    Google Scholar 

  • Vidal, G., Ribas-Carbó, M., Garmier, M., Dubertret, G., Rasmusson, A.G., Mathieu, C., Foyer, C.H., & De Paepe, R. 2007. Lack of respiratory chain complex I impairs alternative oxidase engagement and modulates redox signaling during elicitor-induced cell death in tobacco. Plant Cell 19: 640–655.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Villar, R., Robleto, J.R., De Jong, Y., & Poorter, H. 2006. Differences in construction costs and chemical composition between deciduous and evergreen woody species are small as compared to differences among families. Plant Cell Environ. 29: 1629–1643.

    CAS  PubMed  Google Scholar 

  • Wagner, A.M., Van Emmerik, W.A.M., Zwiers, J.H., & Kaagman, H.M.C.M. 1992. Energy metabolism of Petunia hybrida cell suspensions growing in the presence of antimycin A. In: Molecular, biochemical and physiological aspects of plant respiration, H. Lambers & L.H.W. Van der Plas (eds.). SPB Academic Publishing, The Hague, pp. 609–614.

    Google Scholar 

  • Wang, X. & Curtis, P. 2002. A meta-analytical test of elevated CO2 effects on plant respiration. Plant Ecol. 161: 251–261.

    Google Scholar 

  • Wang, X., Lewis, J.D., Tissue, D.T., Seemann, J.R., & Griffin, K.L. 2001. Effects of elevated atmospheric CO2 concentration on leaf dark respiration of Xanthium strumarium in light and in darkness. Proc. Natl. Acad. Sci. USA 98: 2479–2484.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waring R.H. & Schlesinger, W. H. 1985. Forest ecosystems: concepts and management. Academic Press, Orlando.

    Google Scholar 

  • Watling, J.R., Robinson, S.A., & Seymour, R.S. 2006. Contribution of the alternative pathway to respiration during thermogenesis in flowers of the sacred lotus. Plant Physiol. 140: 1367–1373.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wegner, L.H. & Raschke, K. 1994. Ion channels in the xylem parenchyma of barley roots. A procedure to isolate protoplasts from this tissue and a patch-clamp exploration of salt passageways into xylem vessels. Plant Physiol. 105: 799–813.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams, J.H.H. & Farrar, J.F. 1990. Control of barley root respiration. Physiol. Plant. 79: 259–266.

    CAS  Google Scholar 

  • Williams, K., Percival, F., Merino, J., & Mooney, H.A. 1987. Estimation of tissue construction cost from heat of combustion and organic nitrogen content. Plant Cell Environ. 10: 725–734.

    CAS  Google Scholar 

  • Williams, K., Field, C.B., & Mooney, H.A. 1989. Relationship among leaf construction costs, leaf longevity and light environment in rain-forest plants of the genes Piper. Am. Nat. 133: 198–211.

    Google Scholar 

  • Williams, J.H.H., Winters, A.L., & Farrar, J.F. 1992. Sucrose: a novel plant growth regulator. In: Molecular, biochemical and physiological aspects of plant respiration, H. Lambers & L.H.W. Van der Plas (eds.). SPB Academic Publishing, The Hague, pp. 463–469.

    Google Scholar 

  • Wright, I.J., Reich, P.B., & Westoby, M. 2001. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 15: 423–434.

    Google Scholar 

  • Wright, I.J., Reich, P.B., Atkin, O.K., Lusk, C.H., Tjoelker, M.G., & Westoby, M. 2006. Irradiance, temperature and rainfall influence leaf dark respiration in woody plants: evidence from comparisons across 20 sites. New Phytol. 169: 309–319.

    CAS  PubMed  Google Scholar 

  • Yan, F., Schubert, S., & Mengel, K. 1992. Effect of low root medium pH on net proton release, root respiration, and root growth of corn (Zea mays L.) and broad bean (Vicia faba L.). Plant Physiol. 99: 415–421.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida, K., Terashima, I., & Noguchi, K., 2006. Distinct roles of the cytochrome pathway and alternative oxidase in leaf photosynthesis. Plant Cell Physiol. 47: 22–31.

    CAS  PubMed  Google Scholar 

  • Yoshida, K., Terashima, I., & Noguchi, K. 2007. Up-regulation of mitochondrial alternative oxidase concomitant with chloroplast over-reduction by excess light. Plant Cell Physiol. 48: 606–614.

    CAS  PubMed  Google Scholar 

  • Zacheo, G. & Molinari, S. 1987. Relationship between root respiration and seedling age in tomato cultivars infested by Meloidogyne incognita. Ann. Appl. Biol. 111: 589–595.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lambers, H., Chapin, F.S., Pons, T.L. (2008). Respiration. In: Plant Physiological Ecology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78341-3_3

Download citation

Publish with us

Policies and ethics