Skip to main content

Comparative Genomics in Legumes

  • Conference paper
Molecular Breeding of Forage and Turf
  • 1264 Accesses

Abstract

The legume family will soon include three sequenced genomes. The majority of the euchromatic portions of the model legumes Medicago truncatula and Lotus japonicus have been sequenced in clone-by-clone projects, and the sequencing of the soybean genome is underway in a whole-genome shotgun project. Genome-wide sequence-based comparisons between three genomes with common ancestry at less than ∼50 million years will enable us to infer many features of the ancestral genome, to trace evolutionary differences such as rates of particular gene- or transposon-family expansions or losses, to better understand processes of genome remodeling that follow polyploidy, and to transfer knowledge to other crop and forage legumes. Comparisons among these genomes show a lack of large-scale genome duplications within the Lotus or Medicago genomes following separation of those lineages approximately 40 mya, evidence of an older shared polyploidy event, and clear evidence of a more recent duplication in soybean following the separation from the Medicago and Lotus common ancestor at approximately 50 mya. In contrast to the extensive rearrangements observed in the Arabidopsis genome, the Lotus and Medicago genomes have retained substantial gene collinearity, at the scale of whole chromosomes or chromosome arms – good news for translational genomics across a broad spectrum of forage and crop legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bingham, ET, McCoy, TJ (1988) Cytology and cytogenetics of alfalfa. In: (eds. Hanson AA ), et al. Alfalfa and Alfalfa improvement ASA, CSSA and SSSA, Madison, WIpp. 737–776.

    Google Scholar 

  • Birchler, JA, Auger, DL, Riddle, NC (2003) In search of a molecular basis of heterosis. Plant Cell 15:2236–2239

    Article  PubMed  CAS  Google Scholar 

  • Blanc, G, Wolfe, KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678

    Article  PubMed  CAS  Google Scholar 

  • Bowers, JE, Chapman, BA, Rong, J, Paterson, AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–436

    Article  PubMed  CAS  Google Scholar 

  • Bretagnolle, F, Thompson, JD (2001) Phenotypic plasticity in sympatric diploid and autotetraploid Dactylis glomerata. Int J Plant Sci 162:309–316

    Article  Google Scholar 

  • Cannon, SB, Mitra, A, Baumgarten, A, Young, ND, May, G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10

    Article  PubMed  Google Scholar 

  • Cannon, SB, Sterck, L, Rombauts, S, Sato, S, Cheung, F, Gouzy, JP, Wang, X, Mudge, J, Vasdewani, J, Scheix, T, Spannagl, M, Nicholson, C, Humphray, SJ, Schoof, H, Mayer, KFX, Rogers, J, Quetier, F, Oldroyd, GE, Debelle, F, Cook, DR, Retzel, EF, Roe, BA, Town, CD, Tabata, S, de Peer, Y, VanYoung, ND (2006) Legume genome evolution viewed through the Medicago truncatula. and Lotus japonicus genomes Proc Natl Acad Sci U S A 103:14959–14964

    Article  PubMed  CAS  Google Scholar 

  • Chapman, BA, Bowers, JE, Feltus, FA, Paterson, AH (2006) Buffering crucial functions by paleologous duplicated genes may contribute to cyclicality to angiosperm genome duplication. Proc Natl Acad Sci U S A 103:(8)2730–2735

    Article  PubMed  CAS  Google Scholar 

  • Choi, H-K, Mun, J-H, Kim, D-J, Zhu, H, Baek, J-M, Mudge, J, Roe, BA, Ellis, N, Doyle, J, Kiss, GB, Young, ND, Cook, DR (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci U S A 101:15289–15294

    Article  PubMed  CAS  Google Scholar 

  • Choi, H-K, Luckow, MA, Doyle, JJ, Cook, DR (2006) Development of nuclear genederived markers linked to legume genetic maps. Mol Genet Genom 276:56–70

    Article  CAS  Google Scholar 

  • Cronk, Q, Ojeda I, Pennington, RT (2006) Legume comparative genomics: progress in phylogenetics and phylogenomics. Curr Opin Plant Biol 9:99–103

    Article  PubMed  CAS  Google Scholar 

  • Bodt, S, De Maere, S, de Peer, Y Van(2005) Genome duplication and the origin of angiosperms. Trends Ecol Evol 20:592–597

    Google Scholar 

  • Doyle, JJ, Luckow, MA (2003) The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 131:900–910

    Article  PubMed  CAS  Google Scholar 

  • Doyle, JJ, Doyle, JL, Ballenger, JA, Dickson, EE, Kajita, T, Ohashi, H (1997) A phylogeny of the chloroplast gene rbcL in the Leguminosae: taxonomic correlations and insights into the evolution of nodulation. Am J Bot 84:541–554

    Article  CAS  Google Scholar 

  • Ellison, NW, Liston, A, Steiner, JJ, Williams, WM, Taylor, NL (2006) Molecular phylogenetics of the clover genus (Trifolium – Leguminosae). Mol Phylogenet Evol 39:688–705

    Article  PubMed  CAS  Google Scholar 

  • Etterson, JR, Shaw, RG (2001) Constraint to adaptive evolution in response to global warming. Science 294:151–154

    Article  PubMed  CAS  Google Scholar 

  • Gendrel, AV, Lippman, ZZ, Yordan, CC, Colot, V, Martienssen, R (2002) Heterochromatic histone H3 methylation patterns depend on the Arabidopsis gene DDM1. Science 297:1871–1873

    Article  PubMed  CAS  Google Scholar 

  • Gepts, P, Beavis, WD, Brummer, EC, Shoemaker, RC, Stalker, HT, Weeden, NF, Young, ND (2005) Legumes as a model plant family. Genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiol 137:1228–1235

    Article  PubMed  CAS  Google Scholar 

  • Guo, M, Davis, D, Birchler, JA (1996) Dosage effects on gene expression in a maize ploidy series. Genetics 142:1349–1355

    PubMed  CAS  Google Scholar 

  • Hu, J-M, Lavin, M, Wojciechowski, M, Sanderson, MJ (2000) Phylogenetic systematics of the tribe Millettieae (Leguminosae) based on trnK/matK sequences, and its implications for the evolutionary patterns in Papilionoideae. Am J Bot 87:418–430

    Article  PubMed  CAS  Google Scholar 

  • Hwang, T-Y, Moon, J-K, Yu, S, Yang, K, Mohankumar, S, Yu, YH, Lee, YH, Kim, HS, Kim, HM, Maroof, MAS, Jeong, S-C (2005) Application of comparative genomics in developing molecular markers tightly linked to the virus resistance gene Rsv4 in soybean. Genome 49:380–388

    Article  CAS  Google Scholar 

  • Kevei, Z, Seres, A, Kereszt, A, Kalo, P, Kiss, P, Toth, G, Endre, G, Kiss, GB (2005) Significant microsynteny with new evolutionary highlights is detected between Arabidopsis and legume model plants despite the lack of macrosynteny. Mol Gen Genom 274:644–657

    Article  CAS  Google Scholar 

  • Kochert, G, Stalker, HT, Gimenes, M, Galgaro, L, Lopes, CR, Moore, K (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea. (Leguminosae) Am J Bot 83:1282–1291

    Article  CAS  Google Scholar 

  • Lavin, M, Herendeen, PS, Wojciechowski, MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Syst Biol 54:530–549

    Article  Google Scholar 

  • Lee, JM, Bush, A, Specht, JE, Shoemaker, R (1999). Mapping duplicate genes in soybean. Genome 42:829–836

    Article  Google Scholar 

  • Lewis, GP, Schrire, BD, Mackinder, BA, Lock, JM (2003) Legumes of the world. Royal Botanic Gardens, Kew, UK

    Google Scholar 

  • Maddison, DR, Schulz, K-S (eds.) 1996–2006. The Tree of Life Web Project. Internet address: http://tolweb.org

  • Maere, S, Bodt, S, De Raes, J, Casneuf, T, Montagu, MV, Kuiper, M, de Peer, Y Van(2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci U S A 102:5454–5459

    Article  PubMed  CAS  Google Scholar 

  • Masterson, J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–424

    Article  PubMed  Google Scholar 

  • Mudge, J, Cannon, SB, Kalo, P, Oldroyd, GED, Roe, BA, Town, CD, Young, ND (2005) Highly syntenic regions in the genomes of soybean, Medicago truncatula. , and Arabidopsis thaliana BMC Plant Biol 5:15

    Article  PubMed  CAS  Google Scholar 

  • Partridge, IJ, Wright, J (1992) The value of round-leafed cassia (Cassia rotundifolia. cv. Wynn) in a native pasture grazed with steers in southeast Queensland. Trop Grassl 26:263–269

    Google Scholar 

  • Rauscher, JT, Doyle, JJ, Brown, AH (2004) Multiple origins and nrDNA internal transcribed spacer homeologue evolution in the Glycine tomentella. (Leguminosae) allopolyploid complex Genetics 166:987–998

    Article  PubMed  CAS  Google Scholar 

  • Ruthven, DC (2006) Grazing effects on forb diversity and abundance in a honey mesquite parkland. J Arid Environ 68:668–677

    Article  Google Scholar 

  • Sanderson, MJ, Thorne, JL, Wikstrom, N, Bremer, K (2004) Molecular evidence on plant divergence times. Am J Bot 91:(10)1656–1665

    Article  CAS  Google Scholar 

  • Schlueter, JA, Dixon, P, Granger, C, Grant, D, Clark, L, Doyle, JJ, Shoemaker, RC (2004) Mining EST databases to resolve evolutionary events in major crop species. Genome 47:868–876

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker, RC, Polzin, K, Labate, J, Specht, J, Brummer, EC, Olson, T, Young, ND, Concibido, V, Wilcox, J, Tamulonis, JP, Kochert, G, Boerma, HR (1996) Genome duplication in soybean (Glycine. subgenus soja) Genetics 144:329–338

    PubMed  CAS  Google Scholar 

  • Taylor, NL, Stroube, WH, Collins, GB, Kendall, WA (1963) Interspecific hybridisation of red clover (Trifolium pratense. L.) Crop Sci 3:549–552

    Google Scholar 

  • Tuskan, GA, DiFazio, S, Jansson, S, Bohlmann, J et al. (2006) The genome of black cottonwood (Populus trichocarpa. ) Science 313:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Wikstrom, N, Savolainen, V, Chase, MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond Ser B 268:2211–2220

    Article  CAS  Google Scholar 

  • Yan, HH, Mudge, J, Kim, DJ, Larsen, D, Shoemaker, RC, Cook, DR, Young, ND (2003) Estimates of conserved microsynteny among the genomes of Glycine max. , Medicago truncatula and Arabidopsis thaliana Theor Appl Genet 106:1256–1265

    PubMed  CAS  Google Scholar 

  • Young, ND, Cannon, SB, Sato, S, Kim, DJ, Cook, DR, Town, CD, Roe, BA, Tabata, S (2005) Sequencing the genespaces of Medicago truncatula. and Lotus japonicus Plant Physiol 137:1174–1181

    Article  PubMed  CAS  Google Scholar 

  • Zhu, H, Riely, BK, Burns, NJ, Ane, J-M (2006) Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses. Genetics 172:2491–2499

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Cannon .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this paper

Cite this paper

Cannon, S. (2009). Comparative Genomics in Legumes. In: Molecular Breeding of Forage and Turf. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79144-9_3

Download citation

Publish with us

Policies and ethics