Skip to main content

Mechanisms of transmitter release from astrocytes

  • Chapter
  • First Online:
Astrocytes in (Patho)Physiology of the Nervous System

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette

AMPA:

a-amino-3-hydroxy-5-methyl-isoxazole propionate

ASCT:

alanine-serine-cysteine transporter

ATP:

adenosine 5′-triphosphate

BAPTA:

1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid

BBG:

Brilliant Blue G

BzATP:

3′-O-(4-benzoyl)benzoyl ATP

cAMP:

adenosine 3′:5′ cyclic monophosphate

CFTR:

cystic fibrosis transmembrane conductance regulator

cGMP:

guanosine 3′:5′ cyclic monophosphate

C m :

plasma membrane capacitance

Cx:

connexin

DIDS:

4,4′-diisothiocyanato-stilbene-2,2′-disulfonate

EGFP:

enhanced green fluorescent protein

EM:

electron microscopy

ENT:

equilibrative nucleoside transporters

EPSC:

excitatory post synaptic current

FFA:

flufenamic acid

GA:

18b-glycyrrhetinic acid

GABA:

g-amino butyric acid

GAD:

glutamic acid decarboxylase

GAT:

plasma membrane GABA transporter

GlyT:

plasma membrane glycine transporters

HCA:

homocysteic acid

MRP:

multidrug resistance protein

NKCC:

Na+-K+-Cl- cotransporters

NMDA:

N-methyl-d-aspartic acid

oATP:

oxidized ATP

PPADS:

pyridoxal phosphate-6-azophenyl-2-4-disulfonic acid

SNARE:

soluble N-ethyl maleimide-sensitive fusion protein attachment protein receptor

SOC:

slow outward current

TCA:

tricarboxylic acid

UDP:

uridine diphosphate-glucose

UTP:

uridine 5′-triphosphate

V-ATPase:

vacuolar type proton ATPase

VGAT:

vesicular GABA transporter

VGLUT:

vesicular glutamate transporter

VRAC:

volume-regulated anion channels

VSOR:

volume-sensitive outwardly rectifying

References

  • Abdipranoto A, Liu GJ, Werry EL, Bennett MR (2003) Mechanisms of secretion of ATP from cortical astrocytes triggered by uridine triphosphate. Neuroreport 14:2177–2181

    PubMed  CAS  Google Scholar 

  • Abraham EH, Prat AG, Gerweck L, Seneveratne T, Arceci RJ, Kramer R, Guidotti G, Cantiello HF (1993) The multidrug resistance (mdr1) gene product functions as an ATP channel. Proc Natl Acad Sci USA 90:312–316

    PubMed  CAS  Google Scholar 

  • Allen JW, Shanker G, Aschner M (2001) Methylmercury inhibits the in vitro uptake of the glutathione precursor, cystine, in astrocytes, but not in neurons. Brain Res 894:131–140

    PubMed  CAS  Google Scholar 

  • Allen NJ, Rossi DJ, Attwell D (2004) Sequential release of GABA by exocytosis and reversed uptake leads to neuronal swelling in simulated ischemia of hippocampal slices. J Neurosci 24:3837–3849

    PubMed  CAS  Google Scholar 

  • Anderson CM, Parkinson FE (1997) Potential signalling roles for UTP and UDP: Sources, regulation and release of uracil nucleotides. Trends Pharmacol Sci 18:387–392

    PubMed  CAS  Google Scholar 

  • Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: Review of properties, regulation, and physiological functions. Glia 32:1–14

    PubMed  CAS  Google Scholar 

  • Anderson CM, Bridges RJ, Chamberlin AR, Shimamoto K, Yasuda-Kamatani Y, Swanson RA (2001) Differing effects of substrate and non-substrate transport inhibitors on glutamate uptake reversal. J Neurochem 79:1207–1216

    PubMed  CAS  Google Scholar 

  • Anderson CM, Bergher JP, Swanson RA (2004) ATP-induced ATP release from astrocytes. J Neurochem 88:246–256

    PubMed  CAS  Google Scholar 

  • Angulo MC, Kozlov AS, Charpak S, Audinat E (2004) Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J Neurosci 24:6920–6927

    PubMed  CAS  Google Scholar 

  • Anlauf E, Derouiche A (2005) Astrocytic exocytosis vesicles and glutamate: A high-resolution immunofluorescence study. Glia 49:96–106

    PubMed  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1998a) Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J Neurosci 10:2129–2142

    CAS  Google Scholar 

  • Araque A, Sanzgiri RP, Parpura V, Haydon PG (1998b) Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J Neurosci 18:6822–6829

    CAS  Google Scholar 

  • Araque A, Li N, Doyle RT, Haydon PG (2000) SNARE protein-dependent glutamate release from astrocytes. J Neurosci 20:666–673

    PubMed  CAS  Google Scholar 

  • Arcuino G, Lin JH, Takano T, Liu C, Jiang L, Gao Q, Kang J, Nedergaard M (2002) Intercellular calcium signaling mediated by point-source burst release of ATP. Proc Natl Acad Sci USA 99:9840–9845

    PubMed  CAS  Google Scholar 

  • Axelrod J (1974) Neurotransmitters. Sci Am 230:59–71

    PubMed  CAS  Google Scholar 

  • Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: Aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98:641–653

    PubMed  CAS  Google Scholar 

  • Baker DA, Xi ZX, Shen H, Swanson CJ, Kalivas PW (2002) The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 22:9134–9141

    PubMed  CAS  Google Scholar 

  • Baldwin SA, Beal PR, Yao SY, King AE, Cass CE, Young JD (2004) The equilibrative nucleoside transporter family, SLC29. Pflugers Arch 447:735–743

    PubMed  CAS  Google Scholar 

  • Ballerini P, Rathbone MP, Di Iorio P, Renzetti A, Giuliani P, D’Alimonte I, Trubiani O, Caciagli F, Ciccarelli R (1996) Rat astroglial P2Z (P2X7) receptors regulate intracellular calcium and purine release. Neuroreport 7:2533–2537

    PubMed  CAS  Google Scholar 

  • Ballerini P, Di Iorio P, Ciccarelli R, Nargi E, D’Alimonte I, Traversa U, Rathbone MP, Caciagli F (2002) Glial cells express multiple ATP binding cassette proteins which are involved in ATP release. Neuroreport 13:1789–1792

    PubMed  CAS  Google Scholar 

  • Bal-Price A, Moneer Z, Brown GC (2002) Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes. Glia 40:312–323

    PubMed  Google Scholar 

  • Bao L, Locovei S, Dahl G (2004) Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572:65–68

    PubMed  CAS  Google Scholar 

  • Baron BM, Dudley MW, McCarty DR, Miller FP, Reynolds IJ, Schmidt CJ (1989) Guanine nucleotides are competitive inhibitors of N. -methyl-d-aspartate at its receptor site both in vitro and in vivo J Pharmacol Exp Ther 250:162–169

    PubMed  CAS  Google Scholar 

  • Basarsky TA, Feighan D, MacVicar BA (1999) Glutamate release through volume-activated channels during spreading depression. J Neurosci 19:6439–6445

    PubMed  CAS  Google Scholar 

  • Bender AS, Reichelt W, Norenberg MD (2000) Characterization of cystine uptake in cultured astrocytes. Neurochem Int 37:269–276

    PubMed  CAS  Google Scholar 

  • Benz B, Grima G, Do KQ (2004) Glutamate-induced homocysteic acid release from astrocytes: Possible implication in glia–neuron signaling. Neuroscience 124:377–386

    PubMed  CAS  Google Scholar 

  • Bergles DE, Jahr CE (1997) Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19:1297–1308

    PubMed  CAS  Google Scholar 

  • Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391:281–285

    PubMed  CAS  Google Scholar 

  • Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: Amplification by microglia triggers neurotoxicity. Nat Neurosci 4:702–710

    PubMed  CAS  Google Scholar 

  • Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhauser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620

    PubMed  CAS  Google Scholar 

  • Bianco F, Pravettoni E, Colombo A, Schenk U, Moller T, Matteoli M, Verderio C (2005) Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia. J Immunol 174:7268–7277

    PubMed  CAS  Google Scholar 

  • Boehning D, Snyder SH (2003) Novel neural modulators. Annu Rev Neurosci 26:105–131

    PubMed  CAS  Google Scholar 

  • Borgland SL, Parkinson FE (1997) Uptake and release of [3H]formycin B via sodium-dependent nucleoside transporters in mouse leukemic L1210/MA27.1 cells. J Pharmacol Exp Ther 281:347–353

    PubMed  CAS  Google Scholar 

  • Bowery NG, Brown DA, Collins GG, Galvan M, Marsh S, Yamini G (1976) Indirect effects of amino-acids on sympathetic ganglion cells mediated through the release of gamma-aminobutyric acid from glial cells. Br J Pharmacol 57:73–91

    PubMed  CAS  Google Scholar 

  • Bowser DN, Khakh BS (2007) Two forms of single-vesicle astrocyte exocytosis imaged with total internal reflection fluorescence microscopy. Proc Natl Acad Sci USA 104:4212–4217

    PubMed  CAS  Google Scholar 

  • Bres V, Hurbin A, Duvoid A, Orcel H, Moos FC, Rabie A, Hussy N (2000) Pharmacological characterization of volume-sensitive, taurine permeable anion channels in rat supraoptic glial cells. Br J Pharmacol 130:1976–1982

    PubMed  CAS  Google Scholar 

  • Brundege JM, Diao L, Proctor WR, Dunwiddie TV (1997) The role of cyclic AMP as a precursor of extracellular adenosine in the rat hippocampus. Neuropharmacology 36:1201–1210

    PubMed  CAS  Google Scholar 

  • Bruzzone S, Guida L, Zocchi E, Franco L, De Flora A (2001) Connexin 43 hemi channels mediate Ca2+. -regulated transmembrane NAD+ fluxes in intact cells Faseb J 15:10–12

    PubMed  CAS  Google Scholar 

  • Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci USA 100:13644–13649

    PubMed  CAS  Google Scholar 

  • Bruzzone R, Barbe MT, Jakob NJ, Monyer H (2005) Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J Neurochem 92:1033–1043

    PubMed  CAS  Google Scholar 

  • Caciagli F, Ciccarelli R, Di Iorio P, Ballerini P, Tacconelli L (1988) Cultures of glial cells release purines under field electrical stimulation: The possible ionic mechanisms. Pharmacol Res Commun 20:935–947

    PubMed  CAS  Google Scholar 

  • Calegari F, Coco S, Taverna E, Bassetti M, Verderio C, Corradi N, Matteoli M, Rosa P (1999) A regulated secretory pathway in cultured hippocampal astrocytes. J Biol Chem 274:22539–22547

    PubMed  CAS  Google Scholar 

  • Cardin V, Lezama R, Torres-Marquez ME, Pasantes-Morales H (2003) Potentiation of the osmosensitive taurine release and cell volume regulation by cytosolic Ca2+. rise in cultured cerebellar astrocytes Glia 44:119–128

    PubMed  Google Scholar 

  • Cavelier P, Attwell D (2005) Tonic release of glutamate by a DIDS-sensitive mechanism in rat hippocampal slices. J Physiol 564:397–410

    PubMed  CAS  Google Scholar 

  • Chambers JK, Macdonald LE, Sarau HM, Ames RS, Freeman K, Foley JJ, Zhu Y, McLaughlin MM, Murdock P, McMillan L, Trill J, Swift A, Aiyar N, Taylor P, Vawter L, Naheed S, Szekeres P, Hervieu G, Scott C, Watson JM, Murphy AJ, Duzic E, Klein C, Bergsma DJ, Wilson S, Livi GP (2000) A G protein-coupled receptor for UDP-glucose. J Biol Chem 275:10767–10771

    PubMed  CAS  Google Scholar 

  • Chase LA, Peterson NL, Koerner JF (2007) The lathyrus toxin, beta-N. -oxalyl-l-alpha,beta-diaminopropionic acid (ODAP), and homocysteic acid sensitize CA1 pyramidal neurons to cystine and l-2-amino-6-phosphonohexanoic acid Toxicol Appl Pharmacol 219:1–9

    PubMed  CAS  Google Scholar 

  • Cheema TA, Ward CE, Fisher SK (2005) Subnanomolar concentrations of thrombin enhance the volume-sensitive efflux of taurine from human 1321N1 astrocytoma cells. J Pharmacol Exp Ther 315:755–763

    PubMed  CAS  Google Scholar 

  • Chen X, Wang L, Zhou Y, Zheng LH, Zhou Z (2005) “Kiss-and-run” glutamate secretion in cultured and freshly isolated rat hippocampal astrocytes. J Neurosci 25:9236–9243

    PubMed  CAS  Google Scholar 

  • Chung WJ, Lyons SA, Nelson GM, Hamza H, Gladson CL, Gillespie GY, Sontheimer H (2005) Inhibition of cystine uptake disrupts the growth of primary brain tumors. J Neurosci 25:7101–7110

    PubMed  CAS  Google Scholar 

  • Ciccarelli R, Di Iorio P, Giuliani P, D’Alimonte I, Ballerini P, Caciagli F, Rathbone MP (1999) Rat cultured astrocytes release guanine-based purines in basal conditions and after hypoxia/hypoglycemia. Glia 25:93–98

    PubMed  CAS  Google Scholar 

  • Coco S, Calegari F, Pravettoni E, Pozzi D, Taverna E, Rosa P, Matteoli M, Verderio C (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem 278:1354–1362

    PubMed  CAS  Google Scholar 

  • Contreras JE, Sanchez HA, Eugenin EA, Speidel D, Theis M, Willecke K, Bukauskas FF, Bennett MV, Saez JC (2002) Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc Natl Acad Sci USA 99:495–500

    PubMed  CAS  Google Scholar 

  • Contreras JE, Saez JC, Bukauskas FF, Bennett MV (2003) Gating and regulation of connexin 43 (Cx43) hemichannels. Proc Natl Acad Sci USA 100:11388–11393

    PubMed  CAS  Google Scholar 

  • Cotrina ML, Lin JH, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus CC, Nedergaard M (1998) Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci USA 95:15735–15740

    PubMed  CAS  Google Scholar 

  • Cotrina ML, Lin JH, Lopez-Garcia JC, Naus CC, Nedergaard M (2000) ATP-mediated glia signaling. J Neurosci 20:2835–2844

    PubMed  CAS  Google Scholar 

  • Crepel V, Panenka W, Kelly ME, MacVicar BA (1998) Mitogen-activated protein and tyrosine kinases in the activation of astrocyte volume-activated chloride current. J Neurosci 18:1196–1206

    PubMed  CAS  Google Scholar 

  • Crippa D, Schenk U, Francolini M, Rosa P, Verderio C, Zonta M, Pozzan T, Matteoli M, Carmignoto G (2006) Synaptobrevin2-expressing vesicles in rat astrocytes: Insights into molecular characterization, dynamics and exocytosis. J Physiol 570:567–582

    PubMed  CAS  Google Scholar 

  • Cuenod M, Do KQ, Herrling PL, Turski WA, Matute C, Streit P (1986) Homocysteic acid, an endogenous agonist of NMDA-receptor: Release, neuroactivity and localization. Adv Exp Med Biol 203:253–262

    PubMed  CAS  Google Scholar 

  • Cuenod M, Grandes P, Zangerle L, Streit P, Do KQ (1993) Sulphur-containing excitatory amino acids in intercellular communication. Biochem Soc Trans 21:72–77

    PubMed  CAS  Google Scholar 

  • Curran MJ, Brodwick MS (1991) Ionic control of the size of the vesicle matrix of beige mouse mast cells. J Gen Physiol 98:771–790

    PubMed  CAS  Google Scholar 

  • Dall’Asta V, Gazzola GC, Franchi-Gazzola R, Bussolati O, Longo N, Guidotti GG (1983) Pathways of l. -glutamic acid transport in cultured human fibroblasts J Biol Chem 258:6371–6379

    PubMed  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    PubMed  CAS  Google Scholar 

  • Darby M, Kuzmiski JB, Panenka W, Feighan D, MacVicar BA (2003) ATP released from astrocytes during swelling activates chloride channels. J Neurophysiol 89:1870–1877

    PubMed  CAS  Google Scholar 

  • D’Ascenzo M, Fellin T, Terunuma M, Revilla-Sanchez R, Meaney DF, Auberson YP, Moss SJ, Haydon PG (2007) mGluR5 stimulates gliotransmission in the nucleus accumbens. Proc Natl Acad Sci USA 104:1995–2000

    PubMed  Google Scholar 

  • Decleves X, Regina A, Laplanche JL, Roux F, Boval B, Launay JM, Scherrmann JM (2000) Functional expression of P-glycoprotein and multidrug resistance-associated protein (Mrp1) in primary cultures of rat astrocytes. J Neurosci Res 60:594–601

    PubMed  CAS  Google Scholar 

  • Del Castillo J, Katz B (1954) Quantal components of the end-plate potential. J Physiol 124:560–573

    PubMed  CAS  Google Scholar 

  • Deleuze C, Duvoid A, Hussy N (1998) Properties and glial origin of osmotic-dependent release of taurine from the rat supraoptic nucleus. J Physiol 507 (Pt 2):463–471

    PubMed  CAS  Google Scholar 

  • Deleuze C, Duvoid A, Moos FC, Hussy N (2000) Tyrosine phosphorylation modulates the osmosensitivity of volume-dependent taurine efflux from glial cells in the rat supraoptic nucleus. J Physiol 523 Pt 2:291–299

    Google Scholar 

  • Dermietzel R, Gao Y, Scemes E, Vieira D, Urban M, Kremer M, Bennett MV, Spray DC (2000) Connexin43 null mice reveal that astrocytes express multiple connexins. Brain Res Brain Res Rev 32:45–56

    PubMed  CAS  Google Scholar 

  • Dev KK, Roberts PJ, Henley JM (1996) Characterisation of the interaction between guanyl nucleotides and AMPA receptors in rat brain. Neuropharmacology 35:1583–1593

    PubMed  CAS  Google Scholar 

  • Do KQ, Mattenberger M, Streit P, Cuenod M (1986) In vitro release of endogenous excitatory sulfur-containing amino acids from various rat brain regions. J Neurochem 46:779–786

    PubMed  CAS  Google Scholar 

  • Do KQ, Benz B, Sorg O, Pellerin L, Magistretti PJ (1997) beta-Adrenergic stimulation promotes homocysteic acid release from astrocyte cultures: Evidence for a role of astrocytes in the modulation of synaptic transmission. J Neurochem 68:2386–2394

    PubMed  CAS  Google Scholar 

  • Domercq M, Brambilla L, Pilati E, Marchaland J, Volterra A, Bezzi P (2006) P2Y1 receptor-evoked glutamate exocytosis from astrocytes: Control by tumor necrosis factor-alpha and prostaglandins. J Biol Chem 281:30684–30696

    PubMed  CAS  Google Scholar 

  • Dominy J, Eller S, Dawson R, Jr. (2004) Building biosynthetic schools: Reviewing compartmentation of CNS taurine synthesis. Neurochem Res 29:97–103

    PubMed  CAS  Google Scholar 

  • Doore BJ, Bashor MM, Spitzer N, Mawe RC, Saier MH, Jr. (1975) Regulation of adenosine 3′:5′-monophosphate efflux from rat glioma cells in culture. J Biol Chem 250:4371–4372

    PubMed  CAS  Google Scholar 

  • Duan S, Anderson CM, Keung EC, Chen Y, Chen Y, Swanson RA (2003) P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 23:1320–1328

    PubMed  CAS  Google Scholar 

  • Dun Y, Mysona B, Itagaki S, Martin-Studdard A, Ganapathy V, Smith SB (2007) Functional and molecular analysis of d. -serine transport in retinal Muller cells Exp Eye Res 84:191–199

    PubMed  CAS  Google Scholar 

  • Ellershaw DC, Greenwood IA, Large WA (2000) Dual modulation of swelling-activated chloride current by NO and NO donors in rabbit portal vein myocytes. J Physiol 528(Pt 1):15–24

    Google Scholar 

  • Eskandari S, Zampighi GA, Leung DW, Wright EM, Loo DD (2002) Inhibition of gap junction hemichannels by chloride channel blockers. J Membr Biol 185:93–102

    PubMed  CAS  Google Scholar 

  • Evanko DS, Sul J-Y, Zhang Q, Haydon PG (2004a) The regulated release of transmitters from astrocytes. In: Hatton GI, Parpura V, eds), pp. Glial Neuronal Signaling (KluwerBoston, MA: 397–416.

    Google Scholar 

  • Evanko DS, Zhang Q, Zorec R, Haydon PG (2004b) Defining pathways of loss and secretion of chemical messengers from astrocytes. Glia 47:233–240

    Google Scholar 

  • Fabbretti E, Sokolova E, Masten L, D’Arco M, Fabbro A, Nistri A, Giniatullin R (2004) Identification of negative residues in the P2X3 ATP receptor ectodomain as structural determinants for desensitization and the Ca2+. -sensing modulatory sites J Biol Chem 279:53109–53115

    PubMed  CAS  Google Scholar 

  • Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon PG, Carmignoto G (2004) Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43:729–743

    PubMed  CAS  Google Scholar 

  • Fellin T, Pozzan T, Carmignoto G (2006) Purinergic receptors mediate two distinct glutamate release pathways in hippocampal astrocytes. J Biol Chem 281:4274–4284

    PubMed  CAS  Google Scholar 

  • Fernandez JM, Villalon M, Verdugo P (1991) Reversible condensation of mast cell secretory products in vitro. Biophys J 59:1022–1027

    PubMed  CAS  Google Scholar 

  • Fiacco TA, McCarthy KD (2004) Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J Neurosci 24:722–732

    PubMed  CAS  Google Scholar 

  • Fiacco TA, Agulhon C, Taves SR, Petravicz J, Casper KB, Dong X, Chen J, McCarthy KD (2007) Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity. Neuron 54:611–626

    PubMed  CAS  Google Scholar 

  • Fields RD, Burnstock G (2006) Purinergic signalling in neuron–glia interactions. Nat Rev Neurosci 7:423–436

    PubMed  CAS  Google Scholar 

  • Franco L, Guida L, Bruzzone S, Zocchi E, Usai C, De Flora A (1998) The transmembrane glycoprotein CD38 is a catalytically active transporter responsible for generation and influx of the second messenger cyclic ADP-ribose across membranes. FASEB J 12:1507–1520

    PubMed  CAS  Google Scholar 

  • Fremeau RT, Jr.,Burman J, Qureshi T, Tran CH, Proctor J, Johnson J, Zhang H, Sulzer D, Copenhagen DR, Storm-Mathisen J, Reimer RJ, Chaudhry FA, Edwards RH (2002) The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc Natl Acad Sci USA 99:14488–14493

    PubMed  CAS  Google Scholar 

  • Fumagalli M, Brambilla R, D’Ambrosi N, Volonte C, Matteoli M, Verderio C, Abbracchio MP (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: Role of P2X and P2Y receptors. Glia 43:218–203

    PubMed  Google Scholar 

  • Gadea A, Lopez-Colome AM (2001a) Glial transporters for glutamate, glycine, and GABA: II. GABA transporters. J Neurosci Res 63:461–468

    CAS  Google Scholar 

  • Gadea A, Lopez-Colome AM (2001b) Glial transporters for glutamate, glycine and GABA I. Glutamate transporters. J Neurosci Res 63:453–460

    CAS  Google Scholar 

  • Gadsby DC, Vergani P, Csanady L (2006) The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 440:477–483

    PubMed  CAS  Google Scholar 

  • Gallo V, Suergiu R, Levi G (1986) Kainic acid stimulates GABA release from a subpopulation of cerebellar astrocytes. Eur J Pharmacol 132:319–322

    PubMed  CAS  Google Scholar 

  • Gallo V, Giovannini C, Suergiu R, Levi G (1989) Expression of excitatory amino acid receptors by cerebellar cells of the type-2 astrocyte cell lineage. J Neurochem 52:1–9

    PubMed  CAS  Google Scholar 

  • Gallo V, Patrizio M, Levi G (1991) GABA release triggered by the activation of neuron-like non-NMDA receptors in cultured type 2 astrocytes is carrier-mediated. Glia 4:245–255

    PubMed  CAS  Google Scholar 

  • Gonzalez A, Granados MP, Pariente JA, Salido GM (2006) H2O2 mobilizes Ca2+. from agonist- and thapsigargin-sensitive and insensitive intracellular stores and stimulates glutamate secretion in rat hippocampal astrocytes Neurochem Res 31:741–750

    PubMed  CAS  Google Scholar 

  • Gordon GR, Baimoukhametova DV, Hewitt SA, Rajapaksha WR, Fisher TE, Bains JS (2005) Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nat Neurosci 8:1078–1086

    PubMed  CAS  Google Scholar 

  • Gorodinsky A, Paas Y, Teichberg VI (1993) A ligand binding study of the interactions of guanine nucleotides with non-NMDA receptors. Neurochem Int 23:285–291

    PubMed  CAS  Google Scholar 

  • Gray JH, Owen RP, Giacomini KM (2004) The concentrative nucleoside transporter family, SLC28. Pflugers Arch 447:728–734

    PubMed  CAS  Google Scholar 

  • Gu JG, Nath A, Geiger JD (1996) Characterization of inhibitor-sensitive and -resistant adenosine transporters in cultured human fetal astrocytes. J Neurochem 67:972–977

    PubMed  CAS  Google Scholar 

  • Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19:520–528

    PubMed  CAS  Google Scholar 

  • Haskew RE, Mongin AA, Kimelberg HK (2002) Peroxynitrite enhances astrocytic volume-sensitive excitatory amino acid release via a src tyrosine kinase-dependent mechanism. J Neurochem 82:903–912

    PubMed  CAS  Google Scholar 

  • Haskew-Layton RE, Mongin AA, Kimelberg HK (2005) Hydrogen peroxide potentiates volume-sensitive excitatory amino acid release via a mechanism involving Ca2+. /calmodulin-dependent protein kinase II J Biol Chem 280:3548–3554

    PubMed  CAS  Google Scholar 

  • Hassinger TD, Atkinson PB, Strecker GJ, Whalen LR, Dudek FE, Kossel AH, Kater SB (1995) Evidence for glutamate-mediated activation of hippocampal neurons by glial calcium waves. J Neurobiol 28:159–170

    PubMed  CAS  Google Scholar 

  • Henderson GB, Strauss BP (1991) Evidence for cAMP and cholate extrusion in C6 rat glioma cells by a common anion efflux pump. J Biol Chem 266:1641–1645

    PubMed  CAS  Google Scholar 

  • Hepp R, Perraut M, Chasserot-Golaz S, Galli T, Aunis D, Langley K, Grant NJ (1999) Cultured glial cells express the SNAP-25 analogue SNAP-23. Glia 27:181–187

    PubMed  CAS  Google Scholar 

  • Hertz L, Dringen R, Schousboe A, Robinson SR (1999) Astrocytes: Glutamate producers for neurons. J Neurosci Res 57:417–428

    PubMed  CAS  Google Scholar 

  • Hisadome K, Koyama T, Kimura C, Droogmans G, Ito Y, Oike M (2002) Volume-regulated anion channels serve as an auto/paracrine nucleotide release pathway in aortic endothelial cells. J Gen Physiol 119:511–520

    PubMed  CAS  Google Scholar 

  • Hofer A, Dermietzel R (1998) Visualization and functional blocking of gap junction hemichannels (connexons) with antibodies against external loop domains in astrocytes. Glia 24:141–154

    PubMed  CAS  Google Scholar 

  • Hua X, Malarkey EB, Sunjara V, Rosenwald SE, Li WH, Parpura V (2004) Ca2+. -dependent glutamate release involves two classes of endoplasmic reticulum Ca2+ stores in astrocytes J Neurosci Res 76:86–97

    PubMed  CAS  Google Scholar 

  • Huang YJ, Maruyama Y, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD (2007) The role of pannexin 1 hemichannels in ATP release and cell–cell communication in mouse taste buds. Proc Natl Acad Sci USA 104:6436–6441

    PubMed  CAS  Google Scholar 

  • Hussy N, Deleuze C, Pantaloni A, Desarmenien MG, Moos F (1997) Agonist action of taurine on glycine receptors in rat supraoptic magnocellular neurones: Possible role in osmoregulation. J Physiol 502 (Pt 3):609–621

    PubMed  CAS  Google Scholar 

  • Innocenti B, Parpura V, Haydon PG (2000) Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes. J Neurosci 20:1800–1808

    PubMed  CAS  Google Scholar 

  • Jabs R, Matthias K, Grote A, Grauer M, Seifert G, Steinhauser C (2007) Lack of P2X receptor mediated currents in astrocytes and GluR type glial cells of the hippocampal CA1 region. Glia 55:1648–1655

    PubMed  Google Scholar 

  • Jackson PS, Strange K (1993) Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux. Am J Physiol 265:C1489–1500

    PubMed  CAS  Google Scholar 

  • Jeftinija SD, Jeftinija KV, Stefanovic G, Liu F (1996) Neuroligand-evoked calcium-dependent release of excitatory amino acids from cultured astrocytes. J Neurochem 66:676–684

    PubMed  CAS  Google Scholar 

  • Jeftinija SD, Jeftinija KV, Stefanovic G (1997) Cultured astrocytes express proteins involved in vesicular glutamate release. Brain Res 750:41–47

    PubMed  CAS  Google Scholar 

  • Jeremic A, Jeftinija K, Stevanovic J, Glavaski A, Jeftinija S (2001) ATP stimulates calcium-dependent glutamate release from cultured astrocytes. J Neurochem 77:664–675

    PubMed  CAS  Google Scholar 

  • Joseph SM, Buchakjian MR, Dubyak GR (2003) Colocalization of ATP release sites and ecto-ATPase activity at the extracellular surface of human astrocytes. J Biol Chem 278:23331–23342

    PubMed  CAS  Google Scholar 

  • Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M, Domercq M, Matute C, Tonello F, Gundersen V, Volterra A (2007) Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci 10:331–339

    PubMed  CAS  Google Scholar 

  • Jow F, Chiu D, Lim HK, Novak T, Lin S (2004) Production of GABA by cultured hippocampal glial cells. Neurochem Int 45:273–283

    PubMed  CAS  Google Scholar 

  • Kanematsu S, Ishii S, Umino A, Fujihira T, Kashiwa A, Yamamoto N, Kurumaji A, Nishikawa T (2006) Evidence for involvement of glial cell activity in the control of extracellular d. -serine contents in the rat brain J Neural Transm 113:1717–1721

    PubMed  CAS  Google Scholar 

  • Kang N, Xu J, Xu Q, Nedergaard M, Kang J (2005) Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons. J Neurophysiol 94:4121–4130

    PubMed  CAS  Google Scholar 

  • Kimelberg HK (2004) Increased release of excitatory amino acids by the actions of ATP and peroxynitrite on volume-regulated anion channels (VRACs) in astrocytes. Neurochem Int 45:511–519

    PubMed  CAS  Google Scholar 

  • Kimelberg HK, Goderie SK, Higman S, Pang S, Waniewski RA (1990) Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci 10:1583–1591

    PubMed  CAS  Google Scholar 

  • Kimelberg HK, Macvicar BA, Sontheimer H (2006) Anion channels in astrocytes: Biophysics, pharmacology, and function. Glia 54:747–757

    PubMed  Google Scholar 

  • Kingston AE, Lowndes J, Evans N, Clark B, Tomlinson R, Burnett JP, Mayne NG, Cockerham SL, Lodge D (1998) Sulphur-containing amino acids are agonists for group 1 metabotropic receptors expressed in clonal RGT cell lines. Neuropharmacology 37:277–287

    PubMed  CAS  Google Scholar 

  • Kinney GA, Spain WJ (2002) Synaptically evoked GABA transporter currents in neocortical glia. J Neurophysiol 88:2899–2908

    PubMed  CAS  Google Scholar 

  • Kozlov AS, Angulo MC, Audinat E, Charpak S (2006) Target cell-specific modulation of neuronal activity by astrocytes. Proc Natl Acad Sci USA 103:10058–10063

    PubMed  CAS  Google Scholar 

  • Kreft M, Stenovec M, Rupnik M, Grilc S, Krzan M, Potokar M, Pangrsic T, Haydon PG, Zorec R (2004) Properties of Ca2+. -dependent exocytosis in cultured astrocytes Glia 46:437–445

    PubMed  Google Scholar 

  • Krzan M, Stenovec M, Kreft M, Pangrsic T, Grilc S, Haydon PG, Zorec R (2003) Calcium-dependent exocytosis of atrial natriuretic peptide from astrocytes. J Neurosci 23:1580–1583

    PubMed  CAS  Google Scholar 

  • Kukley M, Barden JA, Steinhauser C, Jabs R (2001) Distribution of P2X receptors on astrocytes in juvenile rat hippocampus. Glia 36:11–21

    PubMed  CAS  Google Scholar 

  • Lai JC, Murthy CR, Cooper AJ, Hertz E, Hertz L (1989) Differential effects of ammonia and beta-methylene-dl. -aspartate on metabolism of glutamate and related amino acids by astrocytes and neurons in primary culture Neurochem Res 14:377–389

    PubMed  CAS  Google Scholar 

  • Lai CP, Bechberger JF, Thompson RJ, MacVicar BA, Bruzzone R, Naus CC (2007) Tumor-suppressive effects of pannexin 1 in C6 glioma cells. Cancer Res 67:1545–1554

    PubMed  CAS  Google Scholar 

  • Latini S, Pedata F (2001) Adenosine in the central nervous system: Release mechanisms and extracellular concentrations. J Neurochem 79:463–484

    PubMed  CAS  Google Scholar 

  • Lazarowski ER, Harden TK (1999) Quantitation of extracellular UTP using a sensitive enzymatic assay. Br J Pharmacol 127:1272–1278

    PubMed  CAS  Google Scholar 

  • Lazarowski ER, Homolya L, Boucher RC, Harden TK (1997) Direct demonstration of mechanically induced release of cellular UTP and its implication for uridine nucleotide receptor activation. J Biol Chem 272:24348–24354

    PubMed  CAS  Google Scholar 

  • Lazarowski ER, Boucher RC, Harden TK (2000) Constitutive release of ATP and evidence for major contribution of ecto-nucleotide pyrophosphatase and nucleoside diphosphokinase to extracellular nucleotide concentrations. J Biol Chem 275:31061–31068

    PubMed  CAS  Google Scholar 

  • Lazarowski ER, Boucher RC, Harden TK (2003a) Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol Pharmacol 64:785–795

    CAS  Google Scholar 

  • Lazarowski ER, Shea DA, Boucher RC, Harden TK (2003b) Release of cellular UDP-glucose as a potential extracellular signaling molecule. Mol Pharmacol 63:1190–1197

    CAS  Google Scholar 

  • Lee CJ, Mannaioni G, Yuan H, Woo DH, Gingrich MB, Traynelis SF (2007a) Astrocytic control of synaptic NMDA receptors. J Physiol 581:1057–1081

    CAS  Google Scholar 

  • Lee TS, Mane S, Eid T, Zhao H, Lin A, Guan Z, Kim JH, Schweitzer J, King-Stevens D, Weber P, Spencer SS, Spencer DD, de Lanerolle NC (2007b) Gene expression in temporal lobe epilepsy is consistent with increased release of glutamate by astrocytes. Mol Med 13:1–13

    CAS  Google Scholar 

  • Li C, Ramjeesingh M, Bear CE (1996) Purified cystic fibrosis transmembrane conductance regulator (CFTR) does not function as an ATP channel. J Biol Chem 271:11623–11626

    PubMed  CAS  Google Scholar 

  • Li S, Mealing GA, Morley P, Stys PK (1999) Novel injury mechanism in anoxia and trauma of spinal cord white matter: Glutamate release via reverse Na+. -dependent glutamate transport J Neurosci 19:RC16

    PubMed  CAS  Google Scholar 

  • Lin JH, Lou N, Kang N, Takano T, Hu F, Han X, Xu Q, Lovatt D, Torres A, Willecke K, Yang J, Kang J, Nedergaard M (2008) A central role of connexin 43 in hypoxic preconditioning. J Neurosci 28:681–695

    PubMed  CAS  Google Scholar 

  • Liu QY, Schaffner AE, Chang YH, Maric D, Barker JL (2000) Persistent activation of GABAA. receptor/Cl− channels by astrocyte-derived GABA in cultured embryonic rat hippocampal neurons J Neurophysiol 84:1392–1403

    PubMed  CAS  Google Scholar 

  • Liu QS, Xu Q, Kang J, Nedergaard M (2004a) Astrocyte activation of presynaptic metabotropic glutamate receptors modulates hippocampal inhibitory synaptic transmission. Neuron Glia Biol 1:307–316

    CAS  Google Scholar 

  • Liu QS, Xu Q, Arcuino G, Kang J, Nedergaard M (2004b) Astrocyte-mediated activation of neuronal kainate receptors. Proc Natl Acad Sci USA 101:3172–3177

    CAS  Google Scholar 

  • Liu HT, Tashmukhamedov BA, Inoue H, Okada Y, Sabirov RZ (2006) Roles of two types of anion channels in glutamate release from mouse astrocytes under ischemic or osmotic stress. Glia 54:343–357

    PubMed  Google Scholar 

  • Locovei S, Wang J, Dahl G (2006) Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett 580:239–244

    PubMed  CAS  Google Scholar 

  • Locovei S, Scemes E, Qiu F, Spray DC, Dahl G (2007) Pannexin1 is part of the pore forming unit of the P2X7 receptor death complex. FEBS Lett 581:483–488

    PubMed  CAS  Google Scholar 

  • Longuemare MC, Swanson RA (1995) Excitatory amino acid release from astrocytes during energy failure by reversal of sodium-dependent uptake. J Neurosci Res 40:379–386

    PubMed  CAS  Google Scholar 

  • Longuemare MC, Swanson RA (1997) Net glutamate release from astrocytes is not induced by extracellular potassium concentrations attainable in brain. J Neurochem 69:879–882

    PubMed  CAS  Google Scholar 

  • Longuemare MC, Rose CR, Farrell K, Ransom BR, Waxman SG, Swanson RA (1999) K(+)-induced reversal of astrocyte glutamate uptake is limited by compensatory changes in intracellular Na+. Neuroscience 93:285–292

    PubMed  CAS  Google Scholar 

  • Lugaro E (1907) Sulle funzioni della nevroglia. Riv Pat Nerv Ment 12:225–233

    Google Scholar 

  • Maienschein V, Marxen M, Volknandt W, Zimmermann H (1999) A plethora of presynaptic proteins associated with ATP-storing organelles in cultured astrocytes. Glia 26:233–244

    PubMed  CAS  Google Scholar 

  • Malarkey EB, Parpura V (2008) Mechanisms of glutamate release from astrocytes. Neurochem Int 52:142–154

    PubMed  CAS  Google Scholar 

  • Martin ED, Fernandez M, Perea G, Pascual O, Haydon PG, Araque A, Cena V (2007) Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission. Glia 55:36–45

    PubMed  Google Scholar 

  • McBean GJ (2002) Cerebral cystine uptake: A tale of two transporters. Trends Pharmacol Sci 23:299–302

    PubMed  CAS  Google Scholar 

  • Meghji P, Tuttle JB, Rubio R (1989) Adenosine formation and release by embryonic chick neurons and glia in cell culture. J Neurochem 53:1852–1860

    PubMed  CAS  Google Scholar 

  • Melin P, Hosy E, Vivaudou M, Becq F (2007) CFTR inhibition by glibenclamide requires a positive charge in cytoplasmic loop three. Biochim Biophys Acta 1768:2438–2446

    PubMed  CAS  Google Scholar 

  • Miyata S, Matsushima O, Hatton GI (1997) Taurine in rat posterior pituitary: Localization in astrocytes and selective release by hypoosmotic stimulation. J Comp Neurol 381:513–523

    PubMed  CAS  Google Scholar 

  • Monahan JB, Hood WF, Michel J, Compton RP (1988) Effects of guanine nucleotides on N. -methyl-d-aspartate receptor-ligand interactions Mol Pharmacol 34:111–116

    PubMed  CAS  Google Scholar 

  • Mongin AA, Kimelberg HK (2002) ATP potently modulates anion channel-mediated excitatory amino acid release from cultured astrocytes. Am J Physiol Cell Physiol 283:C569–C578

    PubMed  CAS  Google Scholar 

  • Mongin AA, Kimelberg HK (2005) ATP regulates anion channel-mediated organic osmolyte release from cultured rat astrocytes via multiple Ca2+. -sensitive mechanisms Am J Physiol Cell Physiol 288:C204–C213

    PubMed  CAS  Google Scholar 

  • Mongin AA, Orlov SN (2001) Mechanisms of cell volume regulation and possible nature of the cell volume sensor. Pathophysiology 8:77–88

    PubMed  CAS  Google Scholar 

  • Mongin AA, Cai Z, Kimelberg HK (1999a) Volume-dependent taurine release from cultured astrocytes requires permissive [Ca2+. ]i and calmodulin Am J Physiol 277:C823–C832

    CAS  Google Scholar 

  • Mongin AA, Reddi JM, Charniga C, Kimelberg HK (1999b) [3H]taurine and d. -[3H]aspartate release from astrocyte cultures are differently regulated by tyrosine kinases Am J Physiol 276:C1226–C1230

    CAS  Google Scholar 

  • Montana V, Ni Y, Sunjara V, Hua X, Parpura V (2004) Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 24:2633–2642

    PubMed  CAS  Google Scholar 

  • Montana V, Malarkey EB, Verderio C, Matteoli M, Parpura V (2006) Vesicular transmitter release from astrocytes. Glia 54:700–715

    PubMed  Google Scholar 

  • Montoliu C, Llansola M, Kosenko E, Corbalan R, Felipo V (1999) Role of cyclic GMP in glutamate neurotoxicity in primary cultures of cerebellar neurons. Neuropharmacology 38:1883–1891

    PubMed  CAS  Google Scholar 

  • Moran J, Morales-Mulia M, Pasantes-Morales H (2001) Reduction of phospholemman expression decreases osmosensitive taurine efflux in astrocytes. Biochim Biophys Acta 1538:313–320

    PubMed  CAS  Google Scholar 

  • Moran MM, Melendez R, Baker D, Kalivas PW, Seamans JK (2003) Cystine/glutamate antiporter regulation of vesicular glutamate release. Ann N Y Acad Sci 1003:445–447

    PubMed  Google Scholar 

  • Moran MM, McFarland K, Melendez RI, Kalivas PW, Seamans JK (2005) Cystine/glutamate exchange regulates metabotropic glutamate receptor presynaptic inhibition of excitatory transmission and vulnerability to cocaine seeking. J Neurosci 25:6389–6393

    PubMed  CAS  Google Scholar 

  • Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter d. -serine Proc Natl Acad Sci USA 102:5606–5611

    PubMed  CAS  Google Scholar 

  • Mutafova-Yambolieva VN, Hwang SJ, Hao X, Chen H, Zhu MX, Wood JD, Ward SM, Sanders KM (2007) Beta-nicotinamide adenine dinucleotide is an inhibitory neurotransmitter in visceral smooth muscle. Proc Natl Acad Sci USA 104:16359–16364

    PubMed  CAS  Google Scholar 

  • Nageotte J (1910) Phenomenes de secretion dans le protoplasma des cellules nevrogliques de la substance grise. C R Soc Biol (Paris) 68:1068–1069

    Google Scholar 

  • Neal MJ, Bowery NG (1979) Differential effects of veratridine and potassium depolarization on neuronal and glial GABA release. Brain Res 167:337–343

    PubMed  CAS  Google Scholar 

  • Neary JT, Kang Y, Willoughby KA, Ellis EF (2003) Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J Neurosci 23:2348–2356

    PubMed  CAS  Google Scholar 

  • Nestor MW, Mok LP, Tulapurkar ME, Thompson SM (2007) Plasticity of neuron–glial interactions mediated by astrocytic EphARs. J Neurosci 27:12817–12828

    PubMed  CAS  Google Scholar 

  • Newman EA (2001) Propagation of intercellular calcium waves in retinal astrocytes and Muller cells. J Neurosci 21:2215–2223

    PubMed  CAS  Google Scholar 

  • Newman EA (2003) Glial cell inhibition of neurons by release of ATP. J Neurosci 23:1659–1666

    PubMed  CAS  Google Scholar 

  • >North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    PubMed  Google Scholar 

  • Ortinau S, Laube B, Zimmermann H (2003) ATP inhibits NMDA receptors after heterologous expression and in cultured hippocampal neurons and attenuates NMDA-mediated neurotoxicity. J Neurosci 23:4996–5003

    PubMed  CAS  Google Scholar 

  • Paas Y, Devillers-Thiery A, Changeux JP, Medevielle F, Teichberg VI (1996) Identification of an extracellular motif involved in the binding of guanine nucleotides by a glutamate receptor. Embo J 15:1548–1556

    PubMed  CAS  Google Scholar 

  • Pangrsic T, Potokar M, Stenovec M, Kreft M, Fabbretti E, Nistri A, Pryazhnikov E, Khiroug L, Giniatullin R, Zorec R (2007) Exocytotic release of ATP from cultured astrocytes. J Biol Chem 282:28749–28758

    PubMed  CAS  Google Scholar 

  • Parkinson FE, Xiong W (2004) Stimulus- and cell-type-specific release of purines in cultured rat forebrain astrocytes and neurons. J Neurochem 88:1305–1312

    PubMed  CAS  Google Scholar 

  • Parkinson FE, Sinclair CJ, Othman T, Haughey NJ, Geiger JD (2002) Differences between rat primary cortical neurons and astrocytes in purine release evoked by ischemic conditions. Neuropharmacology 43:836–846

    PubMed  CAS  Google Scholar 

  • Parkinson FE, Xiong W, Zamzow CR (2005) Astrocytes and neurons: Different roles in regulating adenosine levels. Neurol Res 27:153–160

    PubMed  CAS  Google Scholar 

  • Parpura V, Haydon PG (2000) Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci USA 97:8629–8634

    PubMed  CAS  Google Scholar 

  • Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte–neuron signalling. Nature 369:744–747

    PubMed  CAS  Google Scholar 

  • Parpuraxy V, Fang Y, Basarsky T, Jahn R, Haydon PG (1995a) Expression of synaptobrevin II, cellubrevin and syntaxin but not SNAP-25 in cultured astrocytes. FEBS Lett 377:489–492

    Google Scholar 

  • Parpura V, Liu F, Brethorst S, Jeftinija K, Jeftinija S, Haydon PG (1995b) Alpha-latrotoxin stimulates glutamate release from cortical astrocytes in cell culture. FEBS Lett 360:266–270

    CAS  Google Scholar 

  • Parri HR, Gould TM, Crunelli V (2001) Spontaneous astrocytic Ca2+. oscillations in situ drive NMDAR-mediated neuronal excitation Nat Neurosci 4:803–812

    PubMed  CAS  Google Scholar 

  • Pasantes Morales H, Schousboe A (1988) Volume regulation in astrocytes: A role for taurine as an osmoeffector. J Neurosci Res 20:503–509

    PubMed  CAS  Google Scholar 

  • Pasantes-Morales H, Schousboe A (1989) Release of taurine from astrocytes during potassium-evoked swelling. Glia 2:45–50

    PubMed  CAS  Google Scholar 

  • Pasantes-Morales H, Moran J, Schousboe A (1990) Volume-sensitive release of taurine from cultured astrocytes: Properties and mechanism. Glia 3:427–432

    PubMed  CAS  Google Scholar 

  • Pascual M, Climent E, Guerri C (2001) BDNF induces glutamate release in cerebrocortical nerve terminals and in cortical astrocytes. Neuroreport 12:2673–2677

    PubMed  CAS  Google Scholar 

  • Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116

    PubMed  CAS  Google Scholar 

  • Pasti L, Volterra A, Pozzan T, Carmignoto G (1997) Intracellular calcium oscillations in astrocytes: A highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17:7817–7830

    PubMed  CAS  Google Scholar 

  • Pasti L, Zonta M, Pozzan T, Vicini S, Carmignoto G (2001) Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate. J Neurosci 21:477–484

    PubMed  CAS  Google Scholar 

  • Patel SA, Warren BA, Rhoderick JF, Bridges RJ (2004) Differentiation of substrate and non-substrate inhibitors of transport system xc-: An obligate exchanger of l. -glutamate and l-cystine Neuropharmacology 46:273–284

    PubMed  CAS  Google Scholar 

  • Patti L, Raiteri L, Grilli M, Zappettini S, Bonanno G, Marchi M (2007) Evidence that alpha7 nicotinic receptor modulates glutamate release from mouse neocortical gliosomes. Neurochem Int 51:1–7

    PubMed  CAS  Google Scholar 

  • Pedraza CE, Baltrons MA, Garcia A (2001) Interleukin-1beta stimulates cyclic GMP efflux in brain astrocytes. FEBS Lett 507:303–306

    PubMed  CAS  Google Scholar 

  • Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. Embo J 25:5071–5082

    PubMed  CAS  Google Scholar 

  • Penit J, Jard S, Benda P (1974) Probenecide sensitive 3′-5′-cyclic AMP secretion by isoproterenol stimulated glial cells in culture. FEBS Lett 41:156–160

    PubMed  CAS  Google Scholar 

  • Perez M, Hirschberg CB (1986) Topography of glycosylation reactions in the rough endoplasmic reticulum membrane. J Biol Chem 261:6822–6830

    PubMed  CAS  Google Scholar 

  • Pierson PM, Peteri-Brunback B, Pisani DF, Abbracchio MP, Mienville JM, Rosso L (2007) A(2b) receptor mediates adenosine inhibition of taurine efflux from pituicytes. Biol Cell 99:445–454

    PubMed  CAS  Google Scholar 

  • Poulopoulou C, Nowak LM (1998) Extracellular 3′,5′ cyclic guanosine monophosphate inhibits kainate-activated responses in cultured mouse cerebellar neurons. J Pharmacol Exp Ther 286:99–109

    PubMed  CAS  Google Scholar 

  • Prat AG, Reisin IL, Ausiello DA, Cantiello HF (1996) Cellular ATP release by the cystic fibrosis transmembrane conductance regulator. Am J Physiol 270:C538–C545

    PubMed  CAS  Google Scholar 

  • Pryazhnikov E, Khiroug L (2008) Sub-micromolar increase in [Ca2+. ]i triggers delayed exocytosis of ATP in cultured astrocytes Glia 56:38–49

    PubMed  Google Scholar 

  • Queiroz G, Gebicke-Haerter PJ, Schobert A, Starke K, von Kugelgen I (1997) Release of ATP from cultured rat astrocytes elicited by glutamate receptor activation. Neuroscience 78:1203–1208

    PubMed  CAS  Google Scholar 

  • Queiroz G, Meyer DK, Meyer A, Starke K, von Kugelgen I (1999) A study of the mechanism of the release of ATP from rat cortical astroglial cells evoked by activation of glutamate receptors. Neuroscience 91:1171–1181

    PubMed  CAS  Google Scholar 

  • Raiteri L, Stigliani S, Usai C, Diaspro A, Paluzzi S, Milanese, M Raiteri M, Bonanno G (2007) Functional expression of release-regulating glycine transporters GLYT1 on GABAergic neurons and GLYT2 on astrocytes in mouse spinal cord. Neurochem Int 52:(1–2)103–112

    PubMed  Google Scholar 

  • Ramos-Mandujano G, Vazquez-Juarez E, Hernandez-Benitez R, Pasantes-Morales H (2007) Thrombin potently enhances swelling-sensitive glutamate efflux from cultured astrocytes. Glia 55:917–925

    PubMed  Google Scholar 

  • Rathbone MP, Middlemiss PJ, DeLuca B, Jovetich M (1991) Extracellular guanosine increases astrocyte cAMP: Inhibition by adenosine A2 antagonists. Neuroreport 2:661–664

    PubMed  CAS  Google Scholar 

  • Re DB, Nafia I, Melon C, Shimamoto K, Kerkerian-Le Goff L, Had-Aissouni L (2006) Glutamate leakage from a compartmentalized intracellular metabolic pool and activation of the lipoxygenase pathway mediate oxidative astrocyte death by reversed glutamate transport. Glia 54:47–57

    PubMed  Google Scholar 

  • Reisin IL, Prat AG, Abraham EH, Amara JF, Gregory RJ, Ausiello DA, Cantiello HF (1994) The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel. J Biol Chem 269:20584–20591

    PubMed  CAS  Google Scholar 

  • Ribak CE, Tong WM, Brecha NC (1996) GABA plasma membrane transporters, GAT-1 and GAT-3, display different distributions in the rat hippocampus. J Comp Neurol 367:595–606

    PubMed  CAS  Google Scholar 

  • Ribeiro CS, Reis M, Panizzutti R, de Miranda J, Wolosker H (2002) Glial transport of the neuromodulator d. -serine Brain Res 929:202–209

    PubMed  CAS  Google Scholar 

  • Richerson GB, Wu Y (2003) Dynamic equilibrium of neurotransmitter transporters: Not just for reuptake anymore. J Neurophysiol 90:1363–1374

    PubMed  CAS  Google Scholar 

  • Rindler MJ, Bashor MM, Spitzer N, Saier MH, Jr. (1978) Regulation of adenosine 3′:5′-monophosphate efflux from animal cells. J Biol Chem 253:5431–5436

    PubMed  CAS  Google Scholar 

  • Rosenberg PA, Knowles R, Knowles KP, Li Y (1994) Beta-adrenergic receptor-mediated regulation of extracellular adenosine in cerebral cortex in culture. J Neurosci 14:2953–2965

    PubMed  CAS  Google Scholar 

  • Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403:316–321

    PubMed  CAS  Google Scholar 

  • Rossi D, Brambilla L, Valori CF, Crugnola A, Giaccone G, Capobianco R, Mangieri M, Kingston AE, Bloc A, Bezzi P, Volterra A (2005) Defective tumor necrosis factor-alpha-dependent control of astrocyte glutamate release in a transgenic mouse model of Alzheimer disease. J Biol Chem 280:42088–42096

    PubMed  CAS  Google Scholar 

  • Rosso L, Peteri-Brunback B, Poujeol P, Hussy N, Mienville JM (2004) Vasopressin-induced taurine efflux from rat pituicytes: A potential negative feedback for hormone secretion. J Physiol 554:731–742

    PubMed  CAS  Google Scholar 

  • Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686

    PubMed  CAS  Google Scholar 

  • Rothwell NJ, Luheshi GN (2000) Interleukin 1 in the brain: Biology, pathology and therapeutic target. Trends Neurosci 23:618–625

    PubMed  CAS  Google Scholar 

  • Rutledge EM, Kimelberg HK (1996) Release of [3H]-d. -aspartate from primary astrocyte cultures in response to raised external potassium J Neurosci 16:7803–7811

    PubMed  CAS  Google Scholar 

  • Rutledge EM, Aschner M, Kimelberg HK (1998) Pharmacological characterization of swelling-induced d. -[3H]aspartate release from primary astrocyte cultures Am J Physiol 274:C1511–1520

    PubMed  CAS  Google Scholar 

  • Rutledge EM, Mongin AA, Kimelberg HK (1999) Intracellular ATP depletion inhibits swelling-induced d. -[3H]aspartate release from primary astrocyte cultures Brain Res 842:39–45

    PubMed  CAS  Google Scholar 

  • Sabirov RZ, Dutta AK, Okada Y (2001) Volume-dependent ATP-conductive large-conductance anion channel as a pathway for swelling-induced ATP release. J Gen Physiol 118:251–266

    PubMed  CAS  Google Scholar 

  • Saez JC, Retamal MA, Basilio D, Bukauskas FF, Bennett MV (2005) Connexin-based gap junction hemichannels: Gating mechanisms. Biochim Biophys Acta 1711:215–224

    PubMed  CAS  Google Scholar 

  • Sanzgiri RP, Araque A, Haydon PG (1999) Prostaglandin E2 stimulates glutamate receptor-dependent astrocyte neuromodulation in cultured hippocampal cells. J Neurobiol 41:221–229

    PubMed  CAS  Google Scholar 

  • Schafer MK, Varoqui H, Defamie N, Weihe E, Erickson JD (2002) Molecular cloning and functional identification of mouse vesicular glutamate transporter 3 and its expression in subsets of novel excitatory neurons. J Biol Chem 277:50734–50748

    PubMed  Google Scholar 

  • Schell MJ, Molliver ME, Snyder SH (1995) d-serine, an endogenous synaptic modulator: Localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci USA 92:3948–3952

    PubMed  CAS  Google Scholar 

  • Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717–766

    PubMed  CAS  Google Scholar 

  • Schousboe A (2003) Role of astrocytes in the maintenance and modulation of glutamatergic and GABAergic neurotransmission. Neurochem Res 28:347–352

    PubMed  CAS  Google Scholar 

  • Schwabe U, Trost T (1980) Characterization of adenosine receptors in rat brain by (–)[3H]N6–phenylisopropyladenosine. Naunyn Schmiedebergs Arch Pharmacol 313:179–187

    PubMed  CAS  Google Scholar 

  • Seki Y, Feustel PJ, Keller RW, Jr., Tranmer BI, Kimelberg HK (1999) Inhibition of ischemia-induced glutamate release in rat striatum by dihydrokinate and an anion channel blocker. Stroke 30:433–440

    PubMed  CAS  Google Scholar 

  • Shain WG, Martin DL (1984) Activation of beta-adrenergic receptors stimulates taurine release from glial cells. Cell Mol Neurobiol 4:191–196

    PubMed  CAS  Google Scholar 

  • Shanker G, Allen JW, Mutkus LA, Aschner M (2001) The uptake of cysteine in cultured primary astrocytes and neurons. Brain Res 902:156–163

    PubMed  CAS  Google Scholar 

  • Shi Q, Savage JE, Hufeisen SJ, Rauser L, Grajkowska E, Ernsberger P, Wroblewski JT, Nadeau JH, Roth BL (2003) l-homocysteine sulfinic acid and other acidic homocysteine derivatives are potent and selective metabotropic glutamate receptor agonists. J Pharmacol Exp Ther 305:131–142

    PubMed  CAS  Google Scholar 

  • Shiga H, Murakami J, Nagao T, Tanaka M, Kawahara K, Matsuoka I, Ito E (2006) Glutamate release from astrocytes is stimulated via the appearance of exocytosis during cyclic AMP-induced morphologic changes. J Neurosci Res 84:338–347

    PubMed  CAS  Google Scholar 

  • Sim JA, Young MT, Sung HY, North RA, Surprenant A (2004) Reanalysis of P2X7 receptor expression in rodent brain. J Neurosci 24:6307–6314

    PubMed  CAS  Google Scholar 

  • Sorbera LA, Morad M (1991) Modulation of cardiac sodium channels by cAMP receptors on the myocyte surface. Science 253:1286–1289

    PubMed  CAS  Google Scholar 

  • Spray DC, Ye ZC, Ransom BR (2006) Functional connexin “hemichannels”: A critical appraisal. Glia 54:758–773

    PubMed  Google Scholar 

  • Srinivas M, Hopperstad MG, Spray DC (2001) Quinine blocks specific gap junction channel subtypes. Proc Natl Acad Sci USA 98:10942–10947

    PubMed  CAS  Google Scholar 

  • Stenovec M, Kreft M, Grilc S, Potokar M, Kreft ME, Pangrsic T, Zorec R (2007) Ca2+. -dependent mobility of vesicles capturing anti-VGLUT1 antibodies Exp Cell Res 313:3809–3818

    PubMed  CAS  Google Scholar 

  • Stigliani S, Zappettini S, Raiteri L, Passalacqua M, Melloni E, Venturi C, Tacchetti C, Diaspro A, Usai C, Bonanno G (2006) Glia re-sealed particles freshly prepared from adult rat brain are competent for exocytotic release of glutamate. J Neurochem 96:656–668

    PubMed  CAS  Google Scholar 

  • Stout C, Charles A (2003) Modulation of intercellular calcium signaling in astrocytes by extracellular calcium and magnesium. Glia 43:265–273

    PubMed  Google Scholar 

  • Stout CE, Costantin JL, Naus CC, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277:10482–10488

    PubMed  CAS  Google Scholar 

  • Striedinger K, Meda P, Scemes E (2007) Exocytosis of ATP from astrocyte progenitors modulates spontaneous Ca2+. oscillations and cell migration Glia 55:652–662

    PubMed  Google Scholar 

  • Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+. signaling J Neurosci 26:1378–1385

    PubMed  CAS  Google Scholar 

  • Suadicani SO, Dahl G, Scemes E (2007) Pannexin1 mediates amplification of intercellular Ca2+. waves in astrocytes Neuron Glia Biol 3:S165 (abstract)

    Google Scholar 

  • Südhof TC, Jahn R (1991) Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron 6:665–677

    PubMed  Google Scholar 

  • Sweeney M, White T, Sawynok J (1988) 5-Hydroxytryptamine releases adenosine from primary afferent nerve terminals in the spinal cord. Brain Res 462:346–349

    PubMed  CAS  Google Scholar 

  • Syed N, Martens CA, Hsu WH (2007) Arginine vasopressin increases glutamate release and intracellular Ca2+. concentration in hippocampal and cortical astrocytes through two distinct receptors J Neurochem 103:229–237

    PubMed  CAS  Google Scholar 

  • Szatkowski M, Barbour B, Attwell D (1990) Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348:443–446

    PubMed  CAS  Google Scholar 

  • Takano T, Kang J, Jaiswal JK, Simon SM, Lin JH, Yu Y, Li Y, Yang J, Dienel G, Zielke HR, Nedergaard M (2005) Receptor-mediated glutamate release from volume sensitive channels in astrocytes. Proc Natl Acad Sci USA 102:16466–16471

    PubMed  CAS  Google Scholar 

  • Tang XC, Kalivas PW (2003) Bidirectional modulation of cystine/glutamate exchanger activity in cultured cortical astrocytes. Ann N Y Acad Sci 1003:472–475

    PubMed  Google Scholar 

  • Touyz RM, Picard S, Schiffrin EL, Deschepper CF (1997) Cyclic GMP inhibits a pharmacologically distinct Na+. /H+ exchanger variant in cultured rat astrocytes via an extracellular site of action J Neurochem 68:1451–1461

    PubMed  CAS  Google Scholar 

  • Traversa U, Bombi G, Di Iorio P, Ciccarelli R, Werstiuk ES, Rathbone MP (2002) Specific [(3)H]-guanosine binding sites in rat brain membranes. Br J Pharmacol 135:969–976

    PubMed  CAS  Google Scholar 

  • Trexler EB, Bennett MV, Bargiello TA, Verselis VK (1996) Voltage gating and permeation in a gap junction hemichannel. Proc Natl Acad Sci USA 93:5836–5841

    PubMed  CAS  Google Scholar 

  • Uemura Y Miller JM, Matson WR, Beal MF (1991) Neurochemical analysis of focal ischemia in rats. Stroke 22:1548–1553

    PubMed  CAS  Google Scholar 

  • Verderio C, Matteoli M (2001) ATP mediates calcium signaling between astrocytes and microglial cells: Modulation by IFN-gamma. J Immunol 166:6383–6391

    PubMed  CAS  Google Scholar 

  • Verderio C, Bruzzone S, Zocchi E, Fedele E, Schenk U, De Flora A, Matteoli M (2001) Evidence of a role for cyclic ADP-ribose in calcium signalling and neurotransmitter release in cultured astrocytes. J Neurochem 78:646–657

    PubMed  CAS  Google Scholar 

  • Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: The revolution continues. Nat Rev Neurosci 6:626–640

    PubMed  CAS  Google Scholar 

  • Volterra A, Bezzi P, Rizzini BL, Trotti D, Ullensvang K, Danbolt NC, Racagni G (1996) The competitive transport inhibitor l. -trans-pyrrolidine-2, 4-dicarboxylate triggers excitotoxicity in rat cortical neuron–astrocyte co-cultures via glutamate release rather than uptake inhibition Eur J Neurosci 8:2019–2028

    PubMed  CAS  Google Scholar 

  • Wang Z, Haydon PG, Yeung ES (2000) Direct observation of calcium-independent intercellular ATP signaling in astrocytes. Anal Chem 72:2001–2007

    PubMed  CAS  Google Scholar 

  • Wang CM, Chang YY, Kuo JS, Sun SH (2002) Activation of P2X7 receptors induced [3H]GABA release from the RBA-2 type-2 astrocyte cell line through a Cl−. /HCO3 -dependent mechanism Glia 37:8–18

    PubMed  Google Scholar 

  • Warr O, Takahashi M, Attwell D (1999) Modulation of extracellular glutamate concentration in rat brain slices by cystine-glutamate exchange. J Physiol 514 (Pt 3):783–793

    PubMed  CAS  Google Scholar 

  • Werry EL, Liu GJ, Bennett MR (2006) Glutamate-stimulated ATP release from spinal cord astrocytes is potentiated by substance P. J Neurochem 99:924–936

    PubMed  CAS  Google Scholar 

  • Westergaard N, Varming T, Peng L, Sonnewald U, Hertz L, Schousboe A (1993) Uptake, release, and metabolism of alanine in neurons and astrocytes in primary cultures. J Neurosci Res 35:540–545

    PubMed  CAS  Google Scholar 

  • Wiencken-Barger AE, Djukic B, Casper KB, McCarthy KD (2007) A role for Connexin43 during neurodevelopment. Glia 55:675–686

    PubMed  Google Scholar 

  • Wilhelm A, Volknandt W, Langer D, Nolte C, Kettenmann H, Zimmermann H (2004) Localization of SNARE proteins and secretory organelle proteins in astrocytes in vitro and in situ. Neurosci Res 48:249–257

    PubMed  CAS  Google Scholar 

  • Winder DG, Ritch PS, Gereau RWT, Conn PJ (1996) Novel glial–neuronal signalling by coactivation of metabotropic glutamate and beta-adrenergic receptors in rat hippocampus. J Physiol 494 (Pt 3):743–755

    PubMed  CAS  Google Scholar 

  • Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady RO, Jr., Ferris CD, Snyder SH (1999) Purification of serine racemase: Biosynthesis of the neuromodulator d. -serine Proc Natl Acad Sci USA 96:721–725

    PubMed  CAS  Google Scholar 

  • Wu PH, Durden DA, Hertz L (1979) Net production of gamma-aminobutyric acid in astrocytes in primary cultures determined by a sensitive mass spectrometric method. J Neurochem 32:379–390

    PubMed  CAS  Google Scholar 

  • Xu J, Peng H, Kang N, Zhao Z, Lin JH, Stanton PK, Kang J (2007) Glutamate-induced exocytosis of glutamate from astrocytes. J Biol Chem 282:24185–24197

    PubMed  CAS  Google Scholar 

  • Yan XX, Cariaga WA, Ribak CE (1997) Immunoreactivity for GABA plasma membrane transporter, GAT-1, in the developing rat cerebral cortex: Transient presence in the somata of neocortical and hippocampal neurons. Brain Res Dev Brain Res 99:1–19

    PubMed  CAS  Google Scholar 

  • Yang Y, Ge W, Chen Y, Zhang Z, Shen W, Wu C, Poo M, Duan S (2003) Contribution of astrocytes to hippocampal long-term potentiation through release of d. -serine Proc Natl Acad Sci USA 100:15194–15199

    PubMed  CAS  Google Scholar 

  • Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: A novel mechanism of glutamate release. J Neurosci 23:3588–3596

    PubMed  CAS  Google Scholar 

  • Yoshida Y, Nakane A, Morita M, Kudo Y (2006) A novel effect of bifemelane, a nootropic drug, on intracellular Ca2+. levels in rat cerebral astrocytes J Pharmacol Sci 100:126–132

    PubMed  CAS  Google Scholar 

  • Zeevalk GD, Davis N, Hyndman AG, Nicklas WJ (1998) Origins of the extracellular glutamate released during total metabolic blockade in the immature retina. J Neurochem 71:2373–2381

    PubMed  CAS  Google Scholar 

  • Zetterstrom T, Vernet L, Ungerstedt U, Tossman U, Jonzon B, Fredholm BB (1982) Purine levels in the intact rat brain. Studies with an implanted perfused hollow fibre. Neurosci Lett 29:111–115

    PubMed  CAS  Google Scholar 

  • Zhang JM, Wang HK, Ye CQ, Ge W, Chen Y, Jiang ZL, Wu CP, Poo MM, Duan S (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40:971–982

    PubMed  CAS  Google Scholar 

  • Zhang Q, Fukuda M, Van Bockstaele E, Pascual O, Haydon PG (2004a) Synaptotagmin IV regulates glial glutamate release. Proc Natl Acad Sci USA 101:9441–9446

    CAS  Google Scholar 

  • Zhang Q, Pangrsic T, Kreft M, Krzan M, Li N, Sul JY, Halassa M, Van Bockstaele E, Zorec R, Haydon PG (2004b) Fusion-related release of glutamate from astrocytes. J Biol Chem 279:12724–12733

    CAS  Google Scholar 

  • Zhang Z, Chen G, Zhou W, Song A, Xu T, Luo Q, Wang W, Gu XS, Duan S (2007) Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 9:945–953

    PubMed  CAS  Google Scholar 

  • Zocchi E, Usai C, Guida L, Franco L, Bruzzone S, Passalacqua M, De Flora A (1999) Ligand-induced internalization of CD38 results in intracellular Ca2+. mobilization: Role of NAD+ transport across cell membranes FASEB J 13:273–283

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors’ work is supported by a grant from the National Institute of Mental Health (R01 MH 069791). We thank Drs. Eliana Scemes and David C. Spray for comments on the previous versions of this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Malarkey, E., Parpura, V. (2009). Mechanisms of transmitter release from astrocytes. In: Haydon, P., Parpura, V. (eds) Astrocytes in (Patho)Physiology of the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79492-1_12

Download citation

Publish with us

Policies and ethics