Skip to main content

The Role of Natural Products in Plant-Microbe Interactions

  • Chapter
  • First Online:
Plant-derived Natural Products

Abstract

Plants during their life cycles interact with a large diversity of microbial species. To simultaneously manage symbiotic, competitive and pathogenic interactions, plants rely on their chemical compounds which are capable to recognize, coordinate and regulate the exchange of resources and information with the myriads of potentially interacting microbes. This chapter deals with plant-microbe interactions mediated by natural products and focuses on their role, chemical nature and ecological significance. Particular attention is devoted to role of natural compounds in the cross-talk between plants and beneficial microbes like vesicular-arbuscular mycorrhizal fungi, bacteria inducing legume nodulation and plant-growth promoting rhizobacteria. The role of plant natural compounds with antimicrobial activity against pathogenic bacteria, fungi and oomycetes is also reviewed. Finally, we discuss the potential applications of natural products and future directions of studies including the use of new experimental approaches and techniques such as metagĀ­enomics, proteomics, microscopy, isotope labeling and NMR microspectrophotometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama, K., Matsuzaki, K. and Hayashi, H. (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824ā€“827

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Albrecht, C., Geurts, R. and Bisseling, T. (1999) Legume nodulation and mycorrhizae formation; two extremes in host specificity meet. EMBO J. 18, 281ā€“288

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Amin, M., Kurosaki, F. and Nishi, A. (1998) Carrot phytoalexin alters the membrane permeability of Candida albicans and multilamellar liposomes. J. Gen. Microbiol. 134, 241ā€“246

    Google ScholarĀ 

  • Apel, K. and Hirt, H. (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Ann. Rev. Plant Biol. 55, 373ā€“399

    CASĀ  Google ScholarĀ 

  • Arneson, P.A. and Durbin, R.D. (1968) The sensitivity of fungi to Ī±-tomatine. Phytopathology 58, 536ā€“537

    Google ScholarĀ 

  • Bais, H.P., Prithiviraj, B., Jha, A.K., Ausubel, F.M. and Vivanco, J.M. (2005) Mediation of pathogen resistance by exudation of antimicrobials from roots. Nature 434, 217ā€“221

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S. and Vivanco, J.M. (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann. Rev. Plant Biol. 57, 233ā€“266

    CASĀ  Google ScholarĀ 

  • Baldwin, I.T., Halitschke, R., Paschold, A., von Dahl, C.C. and Preston, C.A. (2006) Volatile signalling in plantā€“plant interactions: ā€˜Talking treesā€™ in the genomics era. Science 311, 812ā€“815

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Barile, E., Bonanomi, G., Antignani, V., Zolfaghari, B., Sajjadi, S.E., Scala, F. and Lanzotti, V. (2007) Saponins from Allium minutiflorum with antifungal activity. Phytochemistry 68, 596ā€“603

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Bauer, W.D. and Mathesius, U. (2004) Plant responses to bacterial quorum sensing signals. Curr. Opin. Plant Biol. 7, 429ā€“433

    PubMedĀ  CASĀ  Google ScholarĀ 

  • BĆ©card, G., Taylor, L.P., Douds, D.D., Pfeffer, P.E. and Doner, L.W. (1995) Flavonoids are not necessary plant signal compounds in arbuscular mycorrhizal symbiosis. Mol. Plant-Microbe Interact. 8, 252ā€“258

    Google ScholarĀ 

  • Blee, K.A. and Anderson, A.J. (1998) Regulation of arbuscule formation by carbon in the plant. Plant J. 16, 523ā€“530

    Google ScholarĀ 

  • Bonkowski, M. (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol. 162, 617ā€“631

    Google ScholarĀ 

  • Bonkowski, M. and Brandt, F. (2002) Do soil protozoa enhance plant growth by hormonal effects? Soil Biol. Biochem. 34, 1709ā€“1715

    CASĀ  Google ScholarĀ 

  • Bowyer, P., Clarke, B.R., Lunness, P., Daniels, M.J. and Osbourn, A.E. (1995) Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme. Science 267, 371ā€“374

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Brencic, A. and Winans, C. (2005) Detection of and response to signals involved in host-micobe interactions by plant-associated bacteria. Microbiol Mol. Biol. R. 69, 155ā€“194

    CASĀ  Google ScholarĀ 

  • Broekaert, W., Terras, F.R.G., Cammue, B.P.A. and Osborn, R.W. (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol. 108, 1353ā€“1358

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Brundrett, M.C. (2001) Coevolution of roots and mycorrhizas of land plants. New Phytol. 154, 275ā€“304

    Google ScholarĀ 

  • Buee, M., Rossignol, M., Jauneau, A., Ranjeva, R. and BĆ©card, G. (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol. Plant-Microbe Interact. 13, 693ā€“698

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Chapin, F.S.III, Moilainen, L. and Kielland, K. (1993) Preferential use of organic nitrogen by a non-mycorrhizal arctic sedge. Nature 361, 150ā€“153

    CASĀ  Google ScholarĀ 

  • Chen, X., Schauder, S., Potier, N., van Drosselaer, A., Pelczer, I., Bassler, B.L. and Hughson, F.M. (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415, 545ā€“549

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Clarholm, M. (1985) Interactions of bacteria, protozoa and plants leading to mineralization of soil-nitrogen. Soil Biol. Biochem. 17, 181ā€“187

    CASĀ  Google ScholarĀ 

  • Cook, R.J., Thomashow, L.S., Weller, D.M., Fujimoto, D. and Mazzola, M. (1995) Molecular mechanisms of defense by rhizobacteria against root disease. Proc. Natl. Acad. Sci. USA 92, 4197ā€“4201

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Cooper, R.M., Resende, M.L.V., Flood, J., Rowan, M.G., Beale, M.H. and Potter, U. (1996) Detection and cellular localization of elemental sulphur in disease-resistant genotypes of Theobroma cacao. Nature, 379, 159ā€“162

    CASĀ  Google ScholarĀ 

  • Crombie, W.M.L., Crombie, L., Green, J.B. and Lucas, J.A. (1986) Pathogenicity of the take-all fungus to oats: its relationship to the concentration and detoxification of the four avenacins. Phytochemistry 25, 2075ā€“2083

    CASĀ  Google ScholarĀ 

  • Dakora, F.D. (2003) Defining new roles for plant and rhizobial molecules in sole and mixed plant cultures involving symbiotic legumes. New Phytol. 158, 39ā€“49

    CASĀ  Google ScholarĀ 

  • Davey, M.E. and Oā€™Toole, G.A. (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. R., 64, 847ā€“867

    CASĀ  Google ScholarĀ 

  • de Weert, S., Vermeiren, H., Mulders, I.H.M., Kuiper, I., Hendrickx, Bloemberg, G.V., Vanderleyden, J., De Mot, R. and Lugtenberg, B.J.J. (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol. Plant-Microbe Interact. 15, 1173ā€“1180

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Denison, R.F., Bledsoe, C., Kahn, M., Oā€™Gara, F., Simms, E.L. and Thomashow, L.S. (2003) Cooperation in the rhizosphere and the ā€œfree riderā€ problem. Ecology 84, 838ā€“845

    Google ScholarĀ 

  • Develey-RiviĆØre, M. and Galiana, E. (2007) Resistance to pathogens and host developmental stage: a multifaceted relationship within the plant kingdom. New Phytol. 175, 405ā€“416

    PubMedĀ  Google ScholarĀ 

  • Dickie, I.A. (2007) Host preference, niche and fungal diversity. New Phytol. 174, 228ā€“230

    Google ScholarĀ 

  • Dixon, R.A. (2001) Natural products and plant disease resistance. Nature 411, 843ā€“847

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Dixon, R.A., Lamb, C.J., Masoud, S., Sewalt, V.J.H. and Paiva, N.L. (1996) Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses ā€“ a review. Gene 179, 61ā€“71

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Dong, Y.H., Xu, J.L., Li, X.Z. and Zhang, L.H. (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA 97, 3526ā€“3531

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Duffy, B., Schouten, A. and Raaijmakers, J.M. (2003) Pathogen self-defense: mechanisms to counteract microbial antagonism. Ann. Rev. Phytopathol. 41, 501ā€“538

    CASĀ  Google ScholarĀ 

  • Ebel, R.C., Stodola, A.J.W., Duan, X. and Auge, R.M. (1994) Non hydraulic root-to-shoot signaling in mycorrhizal and non-mycorrhizal sorghum exposed to partial soil drying or root severing. New Phytol. 127, 495ā€“505

    Google ScholarĀ 

  • Fester, T., Hause, B., Schmidt, D., Halfmann, K., Schmidt, J., Wray, V., Hause, G. and Strack, D. (2002a). Occurrence and localization of apocarotenoids in arbuscular mycorrhizal plant roots. Plant Cell Physiol. 43, 256ā€“265

    CASĀ  Google ScholarĀ 

  • Fester, T., Schmidt, D., Lohse, S., Walter, M.H., Giuliano, G., Bramley, P.M., Fraser, P.D., Hause, B. and Strack, D. (2002b) Stimulation of carotenoid metabolism in arbuscular mycorrhizal roots. Planta 216, 148ā€“154

    CASĀ  Google ScholarĀ 

  • Field, B., JordĆ”n, F. and Osbourn, A. (2006) First encounters - deployment of defence-related natural products by plants. New Phytol. 172, 193ā€“207

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Fravel, D.R. (1988) Role of antibiosis in the biocontrol of plant diseases. Ann. Rev. Phytopathol. 26, 75ā€“91

    CASĀ  Google ScholarĀ 

  • Gagnon, H. and Ibrahim, R.K. (1998) Aldonic acids: a novel family of nod gene inducers of Mesorhizobium loti, Rhizobium lupine, and Sinorhizobium meliloti. Mol. Plant-Microbe Interact. 11, 988ā€“998

    CASĀ  Google ScholarĀ 

  • Gao, M., Teplitski, M., Robinson, J.B. and Bauer, W.D. (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol. Plant-Microbe Interact. 16, 827ā€“834

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Gianinazzi-Pearson, V., Dumas-Gaudot, E., Gollotte, A., Tahiri-Alaoui, A. and Gianinazzi, S. (1996) Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytol. 133, 45ā€“57

    Google ScholarĀ 

  • Gianninazzi-Person, V., Branzanti, B. and Gianninazzi, S. (1989) In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7, 243ā€“255

    Google ScholarĀ 

  • Givskov, M., Nys, R.D., Manefield, M., Gram, L., Maximilien, R., Eberl, L., Molin, S., Steinberg, P.D. and Kyelleberg, S. (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J. Bacteriol. 178, 6618ā€“6622

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Glazebrook, J. and Ausubel, F.M. (1994) Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proc. Natl. Acad. Sci. USA 91, 8955ā€“8959

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Glazebrook, J., Zook, M., Mert, F., Kagan, I., Rogers, E.E., Crute, I.R., Holub, E.B., Hammerschmidt, R. and Ausubel, F.M. (1997) Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics 146, 381ā€“392

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Gomez-Roldan, V., Fermas, S., Brewer, P.B., Puech-Pages, V., Dun, E.A., Pillot, J., Letisse, F., Matusova, R., Danoun, S., Portais, J., Bouwmeester, H., BĆ©card, G., Beveridge, C.A. Rameau, C. and Rochange, S.F. (2008) Strigolactone inhibition of shoot branching. Nature 455, 189ā€“195

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Graham, J.H. (2001) What do root pathogens see in mycorrhizas? New Phytol. 149, 357ā€“359

    Google ScholarĀ 

  • Gray, E.J. and Smith, D.L. (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol. Biochem., 37, 395ā€“412

    CASĀ  Google ScholarĀ 

  • Grayer, R.J. and Harborne, J.B. (1994) A survey of antifungal compounds from higher plants, 1982ā€“1993. Phytochemistry 37, 19ā€“42

    CASĀ  Google ScholarĀ 

  • Hahn, M.G., Bonhoff, A. and Grisebach, H. (1985) Quantitative localization of the phytoalexin glyceollin I in relation to fungal hyphae in soybean roots infected with Phytophthora megasperma f.sp. glycinea. Plant Physiol. 77, 591ā€“601

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Hallahan, D.L. (2000) Monoterpenoid biosynthesis in glandular trichomes of Labiate plants. Adv. Bot. Res. 31, 121ā€“151

    Google ScholarĀ 

  • Hammerschmidt, R. (1999) Phytoalexins: what have we learned after 60 years? Ann. Rev. Phytopathol. 37, 285ā€“306

    CASĀ  Google ScholarĀ 

  • Harborne, J.B. (1988) Flavonoids: advances in research since 1980. Volume 2. Chapman & Hall, London, UK

    Google ScholarĀ 

  • Harborne, J.B. and Williams, C.A. (2000) Advances in flavonoid research since 1992. Phytochemistry 55, 481ā€“504

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Harman, E., Howell, R., Viterbo, A., Chet, I. and Lorito, M. (2004) Trichoderma species ā€“ opportunistic, avirulent plant symbionts. Nature Rev. 2, 43ā€“56

    CASĀ  Google ScholarĀ 

  • Harrison, M.J. (2005) Signaling in the arbuscular mycorrhizal symbiosis. Ann. Rev. Microbiol. 59, 19ā€“42

    CASĀ  Google ScholarĀ 

  • Harrison, M.J. and Dixon, R.A. (1993) Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol. Plant-Microbe Interact. 6, 643ā€“654

    CASĀ  Google ScholarĀ 

  • Hart, J.H. (1981) Role of phytostilbenes in decay and disease resistance. Ann. Rev. Phytopathol. 19, 437ā€“458

    CASĀ  Google ScholarĀ 

  • Hartmann, T. (2008) The lost of origin of chemical ecology in the late 19th century. Proc. Natl. Acad. Sci. USA 105, 4541ā€“4546

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Hawes, M.C., Gunawardena, U., Miyasaka, S. and Zhao, X. (2000) The role of root border cells in plant defense. Trends Plant Sci. 5, 128ā€“133

    PubMedĀ  CASĀ  Google ScholarĀ 

  • He, X.Z. and Dixon, R.A. (2000) Genetic manipulation of isoflavone 7-O-methyltransferase enhances the biosynthesis of 48-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell 12, 1689ā€“1702

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Heil, M. (2002) Ecological costs of induced resistance. Curr. Opin. Plant Biol. 5, 1ā€“6

    Google ScholarĀ 

  • Higgins, V.J. and Smith, D.G. (1972) Separation and identification of two pterocarpanoid phytoalexins produced by red clover leaves. Phytopathology 62, 235ā€“238

    CASĀ  Google ScholarĀ 

  • Hipskind, J.D. and Paiva, N.L. (2000) Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol. Plant-Microbe Interact. 13, 551ā€“562

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Hodge, A., Campbell, C.D. and Fitter, A.H. (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413, 297ā€“299

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Hodge, A., Robinson, D. and Fitter, A.H. (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci. 5, 304ā€“308

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Hodge, H. (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol. 162, 9ā€“24

    Google ScholarĀ 

  • Holden, M.T.G., Chhabra, S.R., de Nys, R., Stead, P., Bainton, N.J., Hill, P.J., Manefield, M., Kumar, N., Labatte, M., England, D., Rice, S., Givskov, M., Salmond, G.P.C., Stewart, G.S.A.B., Bycroft, B.W., Kjelleberg, S. and Williams, P. (1999) Quorum-sensing cross-talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. Mol. Microbiol. 33, 1254ā€“1266

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Humphrey, A.J. and Beale, M.H. (2006) Strigol: biogenesis and physiological activity. Phytochemistry 67, 636ā€“640

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Jeandet, P., Bessis, R., Sbaghi, M. and Meunier, P. (1995) Production of the phytoalexin resveratrol by grapes as a response to Botrytis attack under natural conditions. J. Phytopathol. 143, 135ā€“139

    CASĀ  Google ScholarĀ 

  • Jones, D.L., Hodge, A. and Kuzyakov, Y. (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol. 163, 459ā€“480

    CASĀ  Google ScholarĀ 

  • Jones, P., Andersen, M.D., Nielsen, J.S., HĆøj, P.B. and MĆøller, B.L. (2000) The biosynthesis, degradation, transport and possible function of cyanogenic glucosides. In: Romeo JT, Ibrahim R, Varin L, Pergamon (ed) Recent advances in phytochemistry, vol. 34. Pergamon, Amsterdam

    Google ScholarĀ 

  • Klingner, A., Bothe, H., Wray, V. and Marner, F-J. (1995). Identification of a yellow pigment formed in maize roots upon mycorrhizal colonization. Phytochemistry 38, 53ā€“55

    CASĀ  Google ScholarĀ 

  • Klironomos, J.N. (2003) Variation in plant response to native and exotic abuscular mycorrhizal fungi. Ecology, 84, 2292ā€“2301

    Google ScholarĀ 

  • Kloepper, J.W., Leong, J., Teintze, M. and Schroth, M.N. (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286, 885ā€“886

    CASĀ  Google ScholarĀ 

  • Kuć, J. (1992) Antifungal compounds in plants. In: Nigg HN, Seigler D (ed) Phytochemical resources for medicine and agriculture. Plenum Press, New York

    Google ScholarĀ 

  • Kuć, J. (1995) Phytoalexins, stress metabolism and disease resistance in plants. Ann. Rev. Phytopathol., 33, 275ā€“397

    Google ScholarĀ 

  • Kurosaki, F. (1996) Effect of NADPH associated keto-reducing domain on substrate entry into 6-hydroxymellein synthase, a multifunctional polyketide synthetic enzyme involved in phytoalexin biosynthesis in carrot. Arch. Biochem. Biophys. 328, 213ā€“217

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Lambais, M.R. and Mehdy, M.C. (1996) Soybean roots infected by Glomus intraradices strains differing in infectivity exhibit differential chitinase and Ī²-1,3-glucanase expression. New Phytol. 134, 531ā€“538

    CASĀ  Google ScholarĀ 

  • Lambais, M.R., RĆ­os-Ruiz, W.F. and Andrade, R.M. (2003) Antioxidant responses in bean (Phaseolus vulgaris) roots colonized by arbuscular mycorrhizal fungi. New Phytol. 160, 421ā€“428

    CASĀ  Google ScholarĀ 

  • Leadbetter, J.R. (2001) Plant microbiology. Quieting the raucous crowd. Nature 411, 748ā€“749

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Linthorst, H.J.M. (1991) Pathogenesis-related proteins of plants. CRC Crit. Rev. Plant Sci. 10, 305ā€“308

    Google ScholarĀ 

  • LĆ³pez-RĆ”ez, J.A., Charnikhova, T., GĆ³mez-RoldĆ”n, V., Matusova, R., Kohlen, W., De Vos, R., Verstappen, F., Puech-Pages, V., BĆ©card, G., Mulder, P. and Bouwmeester, H.J. (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol. 178, 863ā€“874

    PubMedĀ  Google ScholarĀ 

  • Lugtenberg, B.J.J., Dekkers, L. and Bloemberg, G.V. (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Ann. Rev. Phytopathol. 39, 461ā€“490

    CASĀ  Google ScholarĀ 

  • Lynch, J.M. and Whipps, J.M. (1990) Substrate flow in the rhizosphere. Plant Soil 129, 1ā€“10

    CASĀ  Google ScholarĀ 

  • Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmidn, J., Lawton, K.A., Dangl, J. and Dietrich, R.A. (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat. Genet. 26:403ā€“410

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Manefield, M., de Nys, R., Kumar, N., Read, R., Givskov, M., Steinberg, P. and Kjelleberg, S. (1999) Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expresson by displacing the AHL signal from its receptor protein. Microbiology 145, 283ā€“291

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Martin-Hernandez, A.M., Dufresne, M., Hugouvieux, V., Melto, R. and Osbourn, A. (2000) Effects of targeted replacement of the tomatinase gene on the interaction of Septoria lycopersici with tomato plants. Mol. Plant-Microbe Interact. 13, 1301ā€“1311

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Matusova, R., Rani, K., Verstappen, F.W.A., Franssen, M.C.R., Beale, M.H. and Bouwmeester, H.J. (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol. 139, 920ā€“934

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Mayama, S. and Tani, T. (1982) MicrospecĀ­trophotometric analysis of the location of avenalumin accumulation in oat leaves in response to fungal infection with Puccinia coronata. Physiol. Plant Pathol. 21, 141ā€“149

    CASĀ  Google ScholarĀ 

  • Mazzola, M. and Gu, Y.H. (2000) Impact of wheat cultivation on microbial communities from replant soils and apple growth in greenhouse trials. Phytopathology 90, 114ā€“119

    PubMedĀ  CASĀ  Google ScholarĀ 

  • McKey, D. (1974) Adaptive patterns in alkaloid physiology. Am. Nat. 108, 305ā€“320

    Google ScholarĀ 

  • McMurchy, R.A. and Higgins, V.J. (1984) Trifolirhizin and maackiain in red clover: changes in Fusarium roseum ā€˜Avenaceumā€- infected roots and in vitro effects on the pathogen. Physiol. Plant Pathol. 25, 229ā€“238

    CASĀ  Google ScholarĀ 

  • Menzies, J.D. (1959) Occurrence and transfer of a biological factor in soil that suppresses potato scab. Phytopathology 49, 648ā€“652

    Google ScholarĀ 

  • Morris, P.F., Bone, E. and Tyler, B.M. (1998) Chemotropic and contact responses of Phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates. Plant Physiol. 117, 1171ā€“1178

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Morrisey, J.P. and Osbourn, A.E. (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol. Mol. Biol. R. 63, 708ā€“724

    Google ScholarĀ 

  • Muyzer, G., de Waal, E.C. and Uitterlinden, A.G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl. Environ. Microb. 59, 695ā€“700

    CASĀ  Google ScholarĀ 

  • Nelson, E.B. (2004) Microbial dynamics and interactions in the spermosphere. Ann. Rev. Phytopathol. 42, 271ā€“309

    CASĀ  Google ScholarĀ 

  • Osbourn, A. (1996) Saponins and plant defence ā€“ a soap story. Trends Plant Sci. 1, 4ā€“9

    Google ScholarĀ 

  • Osbourn, A.E., Clarke, B.R., Lunness, P., Scott, P.R. and Daniels, M.J. (1994) An oat species lacking avenacin is susceptible to infection by Gaeumannomyces graminis var. tritici. Physiol. Mol. Plant Pathol. 45, 457ā€“467

    CASĀ  Google ScholarĀ 

  • Papadopoulou, K., Melton, R.E., Leggett, M., Daniels, M.J. and Osbourn, A. (1999) Compromised disease resistance in saponin-deficient plants. Proc. Natl. Acad. Sci. USA 96, 12923ā€“12928

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Park, S., Takano, Y., Matsuura, H. and Yoshihara, T. (2004) Antifungal compounds from the root and root exudates of Zea mays. Biosci. Biotechnol. Biochem. 68, 1366ā€“1368.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Park, S.W., Lawrence, C.B., Linden, J.C. and Vivanco, J.M. (2002) Isolation and characterization of a novel ribosome-inactivating protein from root cultures of pokeweed and its mechanism of secretion from roots. Plant Physiol. 130, 164ā€“178

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Parniske, M. (2005) Cue for the branching connection. Nature, 435, 750ā€“751

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Parniske, M. (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Review 6, 763ā€“775

    CASĀ  Google ScholarĀ 

  • Perret, X., Staehelin, C., William, J.B. (2000) Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. R. 64, 180ā€“201

    CASĀ  Google ScholarĀ 

  • Persson, J. and NƤsholm, T. (2001) Amino acid uptake: a widespread ability among boreal forest plants. Ecol. Lett. 4, 434ā€“438

    Google ScholarĀ 

  • Peters, N.K., Frost, J.W. and Long, S.R. (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233, 977ā€“980

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Phillips, D.A., Joseph, C.M. and Maxwell, C.A. (1992) Trigonelline and stachydrine released from alfalfa seeds activate NodD2 protein in Rhizobium meliloti. Plant Physiol. 99, 1526ā€“1531

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Phillips, D.A. and Tsai, S.M. (1992) Flavonoids as plant signals to rhizosphere microbes. Mycorrhiza 1, 55ā€“58

    CASĀ  Google ScholarĀ 

  • Pierce, M.L., Cover, E.C., Richardson, P.E., Scholes, V.E. and Essenberg, M. (1996) Adequacy of cellular phytoalexin concentrations in hypersensitively responding cotton leaves. Physiol. Mol. Plant Pathol. 48, 305ā€“324

    CASĀ  Google ScholarĀ 

  • Pieterse, C.M.J., van Loon, L.C. (1999) Salicylic acid independent plant defense pathways. Trends Plant Sci., 4, 52ā€“58

    PubMedĀ  Google ScholarĀ 

  • Prithiviraj, B., Bais, H.P., Weir, T., Suresh, B., Najarro, E.H., Dayakar, B.V., Schweizer, H.P., Vivanco, J.M. (2005) Down regulation of virulence factors of Pseudomonas aeruginosa by salicylic acid attenuates its virulence on Arabidopsis thaliana and Caenorhabditis elegans. Infect. Immun. 73, 5319ā€“5328

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Raaijmakers, J.M., Paulitz, T.C., Steinberg, C., Alabouvette, C. and MoĆ«nne-Loccoz, Y. (2008) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil. DOI 10.1007/s11104-008-9568-6

    Google ScholarĀ 

  • Raaijmakers, J.M. and Weller, D.M. (1998) Natural plant protection by 2,4-diacetylphloroglucinol- producing Pseudomonas spp. in take-all decline soils. Mol. Plant-Microbe Interact. 11, 144ā€“152

    CASĀ  Google ScholarĀ 

  • Radutoiu, S., Madsen, L.H. Madsen, E.B., Jurkiewicz, A., Fukai, E., Quistgaard, E.M.H., Albrektsen, A.S., James, E.K., Thirup, S. and Stougaard, J. (2007) LysM domains mediate lipochitinā€“oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO J. 26, 3923ā€“3935

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Rani, K., Zwanenburg, B., Sugimoto, Y., Yoneyama, K. and Bouwmeester, H.J. (2008) Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signalling compounds (strigolactones) for arbuscular mycorrhizal fungi and parasitic plants. Plant Physiol. Biochem. DOI 10.1016/j.plaphy.2008.04.012.

    Google ScholarĀ 

  • RappĆ© MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369ā€“394

    PubMedĀ  Google ScholarĀ 

  • Read, D.J. and Perez-Moreno, J. (2003) Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance? New Phytol. 157, 475ā€“492

    Google ScholarĀ 

  • Reuber, S., Bornman, J.F. and Weissenbƶck, G. (1996) Phenylpropanoid compounds in primary leaf tissues of rye (Secale cereale). Light response of their metabolism and the possible role in UV-B protection. Physiol. Plant 97, 160ā€“168

    CASĀ  Google ScholarĀ 

  • Ruttledge, T.R. and Nelson, E.B. (1997) Extracted fatty acids from Gossypium hirsutum stimulatory to the seed-rotting fungus, Pythium ultimum. Phytochemistry 46, 77ā€“82

    CASĀ  Google ScholarĀ 

  • Ryan, K.G., Swinny, E.E., Markham, K.R. and Winefield, C. (2002) Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry 59, 23ā€“32

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Schenk, S., Lambein, F. and Werner, D. (1991) Broad antifungal activity of beta-isoxazolinonyl-alanine, a nonprotein amino-acid from roots of pea (Pisum sativum L.) seedlings. Biol. Fert. Soils, 11, 203ā€“209

    CASĀ  Google ScholarĀ 

  • Schoonbeek, H., Del Sorbo, G. and De Waard, M.A. (2001) The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. Mol. Plant-Microbe Interact. 14, 562ā€“571

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Schroth, M.N. and Cook, R.J. (1964) Seed exudation and its influence on pre-emergence damping-off of bean. Phytopathology 54, 670ā€“673

    Google ScholarĀ 

  • Senevirante, G.I. and Harborne, J.B. (1992) Constitutive flavonoids and induced isoflavonoids as taxonomic markers in the genus Vigna. Biochem Syst. Ecol. 20, 459ā€“467

    Google ScholarĀ 

  • Shadle, G.L., Wesley, S.V., Korth, K.L., Chen, F., Lamb, C. and Dixon, R.A. (2003) Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of l-phenylalanine ammonia-lyase. Phytochemistry 64, 153ā€“161

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Simmonds, M.S.J. (2003) Flavonoidā€“insect interactions: recent advances in our knowledge. Phytochemistry 64, 21ā€“30

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Slater, A., Scott, N. and Fowler, M. (2003) Plant Biotechnology: the genetic manipulation of plants. Oxford University Press, Oxford

    Google ScholarĀ 

  • Smith, C.J. (1996) Accumulation of phytoalexins: defence mechanism and stimulus response system. New Phytol. 132, 1ā€“45

    CASĀ  Google ScholarĀ 

  • Smith, D.A., Harrer, J.M. and Cleveland, T.E. (1982) Relation between extracellular production of kievitone hydratase by isolates of Fusarium and their pathogenicity on Phaseolus vulgaris. Phytopathology 72, 1319ā€“1323

    CASĀ  Google ScholarĀ 

  • Smith, S.E. and Read, D.J. (1997) Mycorrhizal symbiosis. Second Edition, Academic Press, London

    Google ScholarĀ 

  • Smith, S.E., Smith, F.A. and Jakobsen, I. (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol. 133, 16ā€“20

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Snyder, B.A. and Nicholson, R.L. (1990) Synthesis of phytoalexins in sorghum as a site-specific response to fungal ingress. Science 248, 1637ā€“1639

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Srinivasan, M., Peterson, D.J. and Holl, F.B. (1996) Influence of IAA producing Bacillus isolates on the nodulation of Phaseolus vulgaris by Rhizobium etli. Can. J. Microbiol., 42, 1006ā€“1014

    CASĀ  Google ScholarĀ 

  • Strack, D. and Fester, T. (2006) Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytol. 172, 22ā€“34

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Teplitski, M., Robinson, J.B. and Bauer, W.D. (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant-Microbe Interact. 13, 637ā€“648

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Treutter, D. (2006) Significance of flavonoids in plant resistance: a review. Environ. Chem. Lett. 4, 147ā€“157

    CASĀ  Google ScholarĀ 

  • Tsuji, J., Jackson, E.P., Gage, D.A., Hammerschmidt, R. and Somerville, S.C. (1992) Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive reaction to Pseudomonas syringae pv. syringae. Plant Physiol. 98, 1304ā€“1309

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Turrini, A., Sbrana, C., Pitto, L., Ruffini Castiglione, M., Giorgetti, L., Briganti, R., Bracci, T., Evangelista, M., Nuti, M.P. and Giovannetti, M. (2004) The antifungal Dm-AMP1 protein from Dahlia merckii expressed in Solanum melongena is released in root exudates and differentially affects pathogenic fungi and mycorrhizal symbiosis. New Phytol. 163, 393ā€“403

    CASĀ  Google ScholarĀ 

  • Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., Magome, H., Kamiya, Y., Shirasu, K., Yoneyama, K., Kyozuka, J., and Yamaguchi, S. (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195ā€“200

    PubMedĀ  CASĀ  Google ScholarĀ 

  • van Dijk, K. and Nelson, E.B. (2000) Fatty acid competition as a mechanism by which Enterobacter cloacae suppresses Pythium ultimum sporangium germination and damping-off. Appl. Environ. Microbiol. 66, 5340ā€“5347

    PubMedĀ  CASĀ  Google ScholarĀ 

  • van West, P., Morris, B.M., Reid, B., Appiah, A.A., Osborne, M.C., Campbell, T.A., Shepherd, S.J. and Gow, N.A.R. (2002) Oomycete plant pathogens use electric fields to target roots. Mol. Plant-Microbe Interact. 15, 790ā€“798

    PubMedĀ  CASĀ  Google ScholarĀ 

  • VanEtten, H.D., Matthews, D.E. and Matthews, P.S. (1989) Phytoalexin detoxification: importance for pathogenicity and practical implications. Ann. Rev. Phytopathol. 27, 143ā€“164

    CASĀ  Google ScholarĀ 

  • Vessey, K.V. (2003) Plant growth promoting rhizobacteria as biofertlizers. Plant Soil 255, 571ā€“586

    CASĀ  Google ScholarĀ 

  • Vierheilig, H., Steinkellner, S., Khaosaad, T. and Garcia-Garrido, J.M. (2008) The biocontrol effect of mycorrhization on soilborne fungal pathogens and the autoregolation of the AM symbiosis: one mechanism, two effect? In: Varma A, (ed), Mycorrhiza. Springer, Berlin

    Google ScholarĀ 

  • Vitousek, P. (1982) Nutrient cycling and nutrient use efficiency. Am. Nat. 119, 553ā€“572

    Google ScholarĀ 

  • Volpin, H., Phillips, D.A., Okon, Y. and Kapulnik, Y. (1995) Suppression of an isoflavonoid phytoalexin defense response in mycorrhizal alfalfa roots. Plant Physiol. 108, 1449ā€“1454

    PubMedĀ  CASĀ  Google ScholarĀ 

  • von Bodman, S.B., Bauer, W.D., Coplin, D.L. (2003) Quorum-sensing in plant pathogenic bacteria. Ann. Rev. Phytopathol. 41, 455ā€“482

    CASĀ  Google ScholarĀ 

  • Walker, L.R. (1993) Nitrogen fixers and species replacements in primary succession. In: Miles J, Walton DWH (ed), Primary succession on land. Blackwell Scientific, Oxford

    Google ScholarĀ 

  • Walker, T.S., Bais, H.P., Deziel, E., Schweizer, H.P., Rahme, L.G., Fall, R., Vivanco, J.M. (2004) Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol. 134, 320ā€“331

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Wasmann, C.C. and VanEtten, H. (1996) Transformation-mediated chromosome loss and disruption of a gene for pisatin demethylase decreases the virulence of Nectria haematococca on pea. Mol. Plant-Microbe Interact. 9, 793ā€“803

    CASĀ  Google ScholarĀ 

  • Weller, D.M., Raaijmakers, J.M., Gardener, B.B.M., Thomashow, L.S. (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Ann. Rev. Phytopathol. 40, 309ā€“348

    CASĀ  Google ScholarĀ 

  • Williams, P. (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153, 3923ā€“3938

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Wink, M. (1999) Functions of plant secondary metabolites and their exploitation in biotechnology. Academic Press, Sheffield, UK

    Google ScholarĀ 

  • Wittstock, U. and Gershenzon, J. (2002) Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr. Opin. Plant Biol. 5, 1ā€“8

    Google ScholarĀ 

  • Zangerl, A.R. and Rutledge, C.E. (1996) The probability of attack and patterns of constitutive and induced defense: a test of optimal defense theory. Am. Nat. 147, 559ā€“608

    Google ScholarĀ 

  • Zhang, L. and Dong, Y. (2004) Quorum sensing and signal interference: diverse implications. Mol. Microbiol. 53, 1563ā€“1571

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Zhang, Y. and Smith, D.A. (1983) Concurrent metabolism of the phytoalexins phaseollin, kievitone and phaseollinisoflavan by Fusarium solani f.sp. phaseoli. Physiol. Plant Pathol. 23, 89ā€“100

    CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felice Scala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bonanomi, G., Vinale, F., Scala, F. (2009). The Role of Natural Products in Plant-Microbe Interactions. In: Osbourn, A., Lanzotti, V. (eds) Plant-derived Natural Products. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85498-4_14

Download citation

Publish with us

Policies and ethics