Skip to main content

Direct Methanol Fuel Cell Durability

  • Chapter
Polymer Electrolyte Fuel Cell Durability

Abstract

This chapter provides an overview of performance durability issues typically occurring in the direct methanol fuel cell (DMFC), in both single cells and short DMFC stacks. The focus of this chapter is on those sources of performance degradation that have been recognized as impacting DMFC operation in a major way (1) the loss of cathode activity due to surface oxide (hydroxide) formation, (2) ruthenium crossover from the anode to the cathode through the proton-conducting membrane, and (3) membrane–electrode interface degradation. Much attention is devoted to the interpretation of performance losses observed during extended operation of DMFCs under “realistic” DMFC operating conditions, including high-voltage cell operation. A separation of the anode and cathode performance losses is attempted whenever possible. Also addressed in this chapter are various methods of mitigating DMFC performance losses, either at the stage of membrane–electrode assembly design and fabrication or in an operating fuel cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angerstein-Kozlowska, H., MacDougall, B. and Conway, B.E. (1973) Origin of activation effects of acetonitrile and mercury in electrocatalytic oxidation of formic acid. J. Electrochem. Soc. 120, 756–766.

    Article  CAS  Google Scholar 

  • Antolini, E. (2003) Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells. J. Mater. Sci. 38, 2995–3005.

    Article  CAS  Google Scholar 

  • Arico, A.S., Creti, P., Baglio, V. , Modica, E. and Antonucci, V. (2000) Influence of flow field design on the performance of a direct methanol fuel cell. J. Power Sources 91, 202–209.

    Article  CAS  Google Scholar 

  • Bae, B., Kim, D., Kim, H.J., Lim, T.H., Oh, I.H. and Ha, H.Y. (2006) Surface characterization of argon-plasma-modified perfluorosulfonic acid membranes. J. Phys. Chem. B 110, 4240–4246.

    Article  CAS  Google Scholar 

  • Bett, J.A.S., Kinoshita, K. and Stonehart, P. (1976) Crystallite growth of platinum dispersed on graphitized carbon-black. 2. Effect of liquid environment. J. Catal. 41, 124–133.

    CAS  Google Scholar 

  • Blurton, K.F., Kunz, H.R. and Rutt, D.R. (1978) Surface area loss of platinum supported on graphite. Electrochim. Acta 23, 183–190.

    Article  CAS  Google Scholar 

  • Borup, R.L., Davey, J.R., Garzon, F.H., Wood, D.L. and Inbody, M.A. (2006) PEM fuel cell electrocatalyst durability measurements. J. Power Sources 163, 76–81.

    Article  CAS  Google Scholar 

  • Cai, M., Ruthkosky, M.S., Merzougui, B., Swathirajan, S., Balogh, M.P. and Oh, S.H. (2006) Investigation of thermal and electrochemical degradation of fuel cell catalysts. J. Power Sources 16, 977–986.

    Article  Google Scholar 

  • Chen, W.M., Sun, G.Q., Guo, J.S., Zhao, X.S., Yan, S.Y., Tian, J., Tang, S.H., Zhou, Z.H. and Xin, Q. (2006) Test on the degradation of direct methanol fuel cell. Electrochim. Acta 51, 2391–2399.

    Article  CAS  Google Scholar 

  • Cho, E.A., Ko, J.J., Ha, H.Y., Hong, S.A., Lee, K.Y., Lim, T.W. and Oh, I.H. (2003) Characteristics of the PEMFC repetitively brought to temperatures below 0 degree C. J. Electrochem. Soc. 150, A1667–A1670.

    Article  CAS  Google Scholar 

  • Choi, J.H., Kim, Y.S., Bashyam, R. and Zelenay, P. (2005) Ruthenium crossover in DMFCs operating with different proton conducting membranes. ECS Trans. 1, 437–445.

    Google Scholar 

  • Conway, B.E. and Jerkiewicz, G. (1992) Surface orientation dependence of oxide film growth at platinum single-crystals. J. Electroanal. Chem. 339, 123–146.

    Article  CAS  Google Scholar 

  • Conway, B.E., Barnett B., Angersteinkozlowska, H. and Tilak, B.V. (1990) A surface-electrochemical basis for the direct logarithmic growth law for initial stages of extension of anodic oxide films formed at noble metals. J. Chem. Phys. 93, 8361–8373.

    Article  CAS  Google Scholar 

  • Dinh, H.N., Ren, X.M., Garzon, F.H., Zelenay, P. and Gottesfeld, S. (2000) Electrocatalysis in direct methanol fuel cells: In-situ probing of Pt–Ru anode catalyst surfaces. J. Electroanal. Chem. 491, 222–233.

    Article  CAS  Google Scholar 

  • Dmowski, W., Egami, T., Swider-Lyons, K.E., Love, C.T. and Rolison, D.R. (2002) Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering. J. Phys. Chem. B. 106, 12677–12683.

    Article  CAS  Google Scholar 

  • Eickes, C., Brosha, E., Garzon, F., Purdy, G., Zelenay, P., Monta, T. and Thompsett, D. (2005) Electrochemical and XRD characterization of Pt–Ru blacks for DMFC anodes. Electrochemical Society Series, vol. 2002, pp. 450–467.

    Google Scholar 

  • Eickes, C., Piela, P., Davey, J. and Zelenay, P. (2006) Recoverable cathode performance loss in direct methanol fuel cells. J. Electrochem. Soc. 153, A171–A178.

    Article  CAS  Google Scholar 

  • Feichtinger, J., Kerres, J., Schulz, A., Walker, M. and Schumacher, U. (2002) Plasma modifications of membranes for PEM fuel cells. J. New Mater. Electrochem. Syst. 5, 155–162.

    CAS  Google Scholar 

  • Ferreira, P.J., La O', G.J., Shao-Horn, Y. , Morgan, D., Makharia, R., Kocha, S. and Gasteiger, H.A. (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells. J. Electrochem. Soc. 152, A2256–A2271.

    Article  Google Scholar 

  • Gancs, L., Hult, B.N., Hakim, N. and Mukerjee, S. (2007) The impact of Ru contamination of a Pt/C electrocatalyst on its oxygen-reducing activity. Electrochem. Solid-State Lett. 10, 15–154.

    Article  Google Scholar 

  • Gasteiger, H.A., Markovic, N., Ross, P.N. and Cairns, E.J. (1994) CO electrooxidation on well-characterized Pt–Ru alloys. J. Phys. Chem. 98, 617–625.

    Article  CAS  Google Scholar 

  • Gubler, L., Kuhn, H., Schmidt, T.J., Scherer, G.G., Brack, H.P. and Simbeck, K. (2004) Performance and durability of membrane electrode assemblies based on radiation-grafted FEP-g-polystyrene membranes. Fuel Cells 4, 196–207.

    Article  CAS  Google Scholar 

  • Guilminot, E., Corcella, A., Charlot, F., Maillard, F. and Chatenet, M. (2007) Detection of PtZ+ ions and Pt nanoparticles inside the membrane of a used PEMFC. J. Electrochem. Soc. 154, B96–B105.

    Article  CAS  Google Scholar 

  • Hamon, C., Purdy, G., Kim, Y.S., Pivovar, B. and Zelenay, P. (2006) Novel process for improved long-term stability of DMFC membrane-electrode assemblies. Proceedings – Electrochemical Society, vol. P2004–21, pp. 352–362.

    Google Scholar 

  • Harrington, D.A. (1997) Simulation of anodic Pt oxide growth. J. Electroanal. Chem. 420, 101–109.

    Article  CAS  Google Scholar 

  • Jeon, M.K., Won, J.Y. and Woo, S.I. (2007) Improved performance of direct methanol fuel cells by anodic treatment. Electrochem. Solid-State Lett. 10, B23–B25.

    Article  CAS  Google Scholar 

  • Jiang, L.H., Sun, G.Q., Wang, S.L., Wang, G.X., Xin, Q., Zhou, Z.H. and Zhou, B. (2005) Electrode catalysts behavior during direct ethanol fuel cell life-time test. Electrochem. Commun. 7, 663–668.

    Article  CAS  Google Scholar 

  • Jiang, R.Z., Rong, C. and Chu, D. (2007) Fuel crossover and energy conversion in lifetime operation of direct methanol fuel cells. J. Electrochem. Soc. 154, B13–B19.

    Article  CAS  Google Scholar 

  • Johnston, C.M., Choi, J., Kim, Y.S. and Zelenay, P. (2006) Towards understanding ruthenium crossover effects: the oxygen reduction reaction on Ru-modified platinum surfaces. 209th Electrochemical Society meeting, Denver, Colorado, May 07–May 12, Abs. no. 1123.

    Google Scholar 

  • Kerres, J., Ullrich, A., Hein, M., Gogel, V., Friedrich, K.A. and Jörissen, L. (2004) Cross-linked polyaryl blend membranes for polymer electrolyte fuel cells. Fuel Cells, 4, 105–112.

    Article  CAS  Google Scholar 

  • Kim, Y.S. and Pivovar, B. (2005) Durability of membrane–electrode interface under DMFC operating conditions. ECS Trans. 1, 457–467.

    Article  Google Scholar 

  • Kim, Y.S., Harrison, W.L., McGrath, J.E. and Pivovar, B.S. (2004) Effect of interfacial resistance on long term performance of direct methanol fuel cells. 205th Electrochemical Society meeting, San Antonio, Texas, May 9–13, Abs. no. 334.

    Google Scholar 

  • Kinoshita, K., Routsis, K., Bett, J.A.S. and Brooks, C.S. (1973) Changes in morphology of platinum agglomerates during sintering. Electrochim. Acta 18, 953–961.

    Article  CAS  Google Scholar 

  • Lee, K., Ishihara, A., Mitsushima, S., Kamiya, N. and Ota, K. (2004) Effect of recast temperature of diffusion and dissolution of oxygen and morphological properties in recast Nafion. J. Electrochem. Soc. 151, A639–A645.

    Article  CAS  Google Scholar 

  • Liang, Z.X., Zhao, T.S. and Prabhuram, J. (2006) A glue method for fabricating membrane electrode assemblies for direct methanol fuel cells. Electrochim. Acta 51, 6412–6418.

    Article  CAS  Google Scholar 

  • Liu, W.P. and Wang, C.Y. (2007) Three-dimensional simulations of liquid feed direct methanol fuel cells. J. Electrochem. Soc. 154, B352–B361.

    Article  CAS  Google Scholar 

  • Morikawa, H., Mitsui, T., Hamagami, J. and Kanamura, K. (2002) Fabrication of membrane electrode assembly for micro fuel cell by using electrophoretic deposition process. Electrochemistry 70, 937–939.

    CAS  Google Scholar 

  • Oedegaard, A. (2006) Characterization of direct methanol fuel cells under near-ambient conditions. J. Power Sources 157, 244–252.

    Article  CAS  Google Scholar 

  • Paik, C.H., Jarvi, T.D. and O'Grady, W.E. (2004) Extent of PEMFC cathode surface oxidation by oxygen and water measured by CV. Electrochem. Solid-State Lett. 7, A82–A84.

    Article  CAS  Google Scholar 

  • Piela, P., Eickes, C., Brosha, E., Garzon, F. and Zelenay, P. (2004) Ruthenium crossover in direct methanol fuel cell with Pt–Ru black anode. J. Electrochem. Soc. 151, A2053–A2059.

    Article  CAS  Google Scholar 

  • Pivovar, B. and Kim, Y.S. (2007) The membrane–electrode interface in PEFCs: I. A method for quantifying membrane–electrode interfacial resistance. J. Electrochem. Soc. 154, B739–B744.

    CAS  Google Scholar 

  • Roen, L.M., Paik, C.H. and Jarvi, T.D. (2004) Electrocatalytic corrosion of carbon support in PEMFC cathodes. Electrochem. Solid-State Lett. 7, A19–A22.

    Article  CAS  Google Scholar 

  • Roziere, J. and Jones, D.J. (2003) Non-fluorinated polymer materials for proton exchange membrane fuel cells. Annu. Rev. Mater. Res. 33, 503–555.

    Article  CAS  Google Scholar 

  • Saha, M.S., Kimoto, K., Nishiki, Y. and Furuta, T. (2004) A fabrication method for MEAs for PEFCs using Nafion precursor. Electrochem. Solid-State Lett. 7, A429–A431.

    Article  CAS  Google Scholar 

  • Sarma, L.S., Chen, C.H., Wang, G.R., Hsueh, K.L., Huang, C.P., Sheu, H.S., Liu, D.G., Lee, J.F. and Hwang, B.J. (2007) Investigations of direct methanol fuel cell (DMFC) fading mechanisms. J. Power Sources 167, 358–365.

    Article  CAS  Google Scholar 

  • Savadogo, O. (1998) Emerging membrane for electrochemical systems: (I) solid polymer electrolyte membranes for fuel cell systems. J. New Mater. Electrochem. Syst. 1, 47–66.

    CAS  Google Scholar 

  • Scott, K., Taama, W. and Crulickshank, J. (1998) Performance of a direct methanol fuel cell. J. Appl. Electrochem. 28, 289–297.

    Article  CAS  Google Scholar 

  • Silva, V.S., Ruffmann, B., Silva, H., Gallego, Y.A., Mendes, A., Madeira, L.M. and Nunes, S.P. (2005) Proton electrolyte membrane properties and direct methanol fuel cell performance – I. Characterization of hybrid sulfonated poly(ether ether ketone)/zirconium oxide membranes. J. Power Sources 140, 34–40.

    CAS  Google Scholar 

  • Siroma, Z., Fujiwara, N., Ioroi, T., Yamazaki, S., Yasuda, K. and Miyazaki, Y. (2004) Dissolution of Nafion membrane and recast Nafion film in mixtures of methanol and water. J. Power Sources 125, 41–45.

    Article  Google Scholar 

  • Tseung, A.C.C. and Dhara, S.C. (1975) Loss of surface-area by platinum and supported platinum black electrocatalyst. Electrochim. Acta 20, 681–683.

    Article  CAS  Google Scholar 

  • Uribe, F.A. and Zawodzinski, T.A. (2003) Method for Improving Fuel Cell Performance, US Patent # 6,635,369.

    Google Scholar 

  • Watanabe, M., Tsurumi, K., Mizukami, T., Nakamura, T. and Stonehart, P. (1994) Activity and stability of ordered and disordered Co–Pt alloys for phosphoric acid fuel cells. J. Electrochem. Soc. 141, 2659–2668.

    Article  CAS  Google Scholar 

  • Wilson, M.S., Garzon, F.H., Sickafus, K.E. and Gottesfeld, S. (1993) Surface area loss of supported platinum in polymer electrolyte fuel cells. J. Electrochem. Soc. 140, 2872–2877.

    Article  CAS  Google Scholar 

  • Yasuda, D.A., Taniguchi, A., Akita, T., Ioroi, T. and Siroma, Z. (2006) Characteristics of a platinum black catalyst layer with regard to platinum dissolution phenomena in a membrane electrode assembly. J. Electrochem. Soc. 153, A1599–1603.

    Article  CAS  Google Scholar 

  • Zelenay, P. and Kim, Y.S. (2005) Performance degradation of DMFC MEAs and methods of improving their longevity. Fuel Cells Durability – Stationary, Automotive, and Portable. Knowledge Foundation, Washington DC, Dec. 8–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kim, Y.S., Zelenay, P. (2009). Direct Methanol Fuel Cell Durability. In: Büchi, F.N., Inaba, M., Schmidt, T.J. (eds) Polymer Electrolyte Fuel Cell Durability. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85536-3_10

Download citation

Publish with us

Policies and ethics