Skip to main content

Lyapunov-Krasovskii Functional Approach for Coupled Differential-Difference Equations with Multiple Delays

  • Chapter
  • First Online:
Delay Differential Equations

Abstract

Coupled differential-difference equations (coupled DDEs) represent a very general class of time-delay systems. Indeed, traditional DDEs of retarded or neutral type, as well as singular systems, can all be considered as special cases of coupled DDEs. The coupled DDE formulation is especially effective when a system has a large number of state variables, but only a few of them involve time delays. In this chapter, the stability of such systems is studied by using a Lyapunov-Krasovskii functional method. For linear systems, a quadratic Lyapunov-Krasovskii functional is discretized to reduce the stability problem to a set of linear matrix inequalities for which effective numerical algorithms are available, and widely implemented in such software packages as MATLAB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyd, S., El Ghaoui, L., Feron E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. Philadelphia: SIAM.

    Google Scholar 

  2. Brayton, R. (1976). Nonlinear oscillations in a distributed network. Quartely of Applied Mathematics, 24, 289–301.

    MathSciNet  Google Scholar 

  3. Carvalho, L. A. V. (1996). On quadratic Liapunov functionals for linear difference equations. Linear Algebra and its Applications, 240, 41–64.

    Article  MATH  MathSciNet  Google Scholar 

  4. Cooke, K. L., & van den Driessche, P., (1986). On zeros of some transcendental equations. Funkcialaj Ekvacioj, 29, 77–90.

    MATH  MathSciNet  Google Scholar 

  5. Cruz, M. A., & Hale, J. K. (1970). Stability of functional differential equations of neutral type. Journal of Differential Equations, 7, 334–355.

    Article  MATH  MathSciNet  Google Scholar 

  6. Doyle, J. C. (1982). Analysis of feedback systems with structured uncertainties. IEE Proceedings Part D, 129(6), 242–250.

    MathSciNet  Google Scholar 

  7. Doyle, J. C., Wall, J., & Stein, G. (1982). Performance and robustness analysis for structured uncertainty. 20th IEEE Conference on Decision and Control, 629–636.

    Google Scholar 

  8. Fazelinia, H., Sipahi, R., & Olgac, H. (2007). Stability robustness analysis of multiple time-delayed systems using “building block” concept. IEEE Transactions on Automatic Control, 52(5), 799–810.

    Article  MathSciNet  Google Scholar 

  9. Fridman, E. (2002). Stability of linear descriptor systems with delay: a Lyapunov-based approach. Journal of Mathematical Analysis and Applications, 273, 14–44.

    Article  MathSciNet  Google Scholar 

  10. Gahinet, P., Nemirovski, A., Laub, A., & Chilali, M. (1995). LMI control toolbox for use with MATLAB. Natick, MA: Mathworks.

    Google Scholar 

  11. Gu, K. (2001). A further refinement of discretized Lyapunov functional method for the stability of time-delay systems. International Journal of Control, 74(10), 967–976.

    Article  MATH  MathSciNet  Google Scholar 

  12. Gu, K. (2003). Refine discretized Lyapunov functional method for systems with multiple delays. International Journal of Robust Nonlinear Control, 13, 1017–1033.

    Article  MATH  Google Scholar 

  13. Gu, K. (2008). Large systems with multiple low-dimensional delay channels. Semi-plenary lecture, Proceedings of 2008 Chinese Control and Decision Conference, Yantai, China, July 2–4.

    Google Scholar 

  14. Gu, K., Kharitonov, V. L., & Chen, J. (2003). Stability of Time-Delay Systems. Boston: Birkhäuser.

    Google Scholar 

  15. Gu, K., & Liu, Y. (2007). Lyapunov-Krasovskii functional for coupled differential-functional equations. 46th Conference on Decision and Control, New Orleans, LA, December 12–14.

    Google Scholar 

  16. Gu, K., & Liu, Y. (2008). Lyapunov-Krasovskii functional for uniform stability of coupled differential-functional equations. Accepted for publication in Automatica.

    Google Scholar 

  17. Gu, K., & Niculescu, S.-I. (2006). Stability analysis of time-delay systems: A Lyapunov approach. In: Loría, A., Lamnabhi-Lagarrigue, F., & Panteley, E. Advanced Topics in Control Systems Theory, Lecture Notes from FAP 2005 (pp. 139–170). London: Springer.

    Google Scholar 

  18. Gu, K., Niculescu, S.-I., & Chen, J. (2005). On stability of crossing curves for general systems with two delays. Journal of Mathematical Analysis and Applications, 311, 231–253.

    Article  MATH  MathSciNet  Google Scholar 

  19. Hale, J. K. (1975). Parametric stability in difference equations. Bolletting Univerdella Mathematica Italiana, 4, Suppl. 11.

    MathSciNet  Google Scholar 

  20. Hale, J. K., & Cruz, M. A. (1970). Existence, uniqueness and continuous dependence for hereditary. systems. Annali di Matematica Pura ed Applicata, 85(1), 63–81.

    Article  MATH  MathSciNet  Google Scholar 

  21. Hale, J., & Huang, W. (1993). Variation of constants for hybrid systems of functional differential equations. Proceedings of Royal Society of Edinburgh, 125A, 1–12.

    Google Scholar 

  22. Hale, J. K., & Verduyn Lunel, S. M. (1993). Introduction to functional differential equations. New York: Springer.

    Google Scholar 

  23. Hale, J. K., & Verduyn Lunel, S. M. (2002). Strong stabilization of neutral functional differential equaitons. IMA Journal of Mathematical Control and Information, 19, 5–23.

    Article  MathSciNet  Google Scholar 

  24. Han Q., & Yu, X. (2002). A discretized Lyapunov functional approach to stability of linear delay-differential systems of neutral type. Proceedings of the 15th IFAC World Congress on Automatic Control, Barcelona, Spain, July 21–26, 2002.

    Google Scholar 

  25. Jiang, Z.-P. & Wang, Y. (2001). Input-to-state stability for discrete-time nonlinear systems. Automatica, 37, 857–869.

    Article  MATH  MathSciNet  Google Scholar 

  26. Kabaov, I. P. (1946). On steam pressure control [Russian]. Inzhenerno Sbornik, 2, 27–46.

    Google Scholar 

  27. Karafyllis, I., Pepe, P., & Jiang, Z.-P. (2007). Stability results for systems described by coupled retarded functional differential equations and functional difference equations. Seventh Workshop on Time-Delay Systems, Nantes, France, September 17–19.

    Google Scholar 

  28. Karafyllis, I., Pepe, P., & Jiang, Z.-P. (2007). Stability Results for Systems Described by Retarded Functional Differential Equations. 2007 European Control Conference, Kos, Greece, July 2–5.

    Google Scholar 

  29. Karaev, R. I. (1978). Transient processes in long distance transmission lines [Russian]. Moscow: Energia Publishing House.

    Google Scholar 

  30. Kharitonov, V. L., & Zhabko, A. P. (2003). Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems. Automatica, 39, 15–20.

    Article  MATH  MathSciNet  Google Scholar 

  31. Kolmanovskii V., & Myshkis, A. (1999). Introduction to the theory and applications of functional differential equations. Dordrecht, the Netherlands: Kluwer.

    Google Scholar 

  32. Krasovskii, N. N. (1959). Stability of motion [Russian], Moscow [English translation, 1963]. Stanford, CA: Stanford University Press.

    Google Scholar 

  33. Lee, S., & Lee, H. S. (1993). Modeling, design, and evaluation of advanced teleoperator control systems with short time delay. IEEE Transactions on Robotics and Automation, 9(5), 607–623.

    Article  Google Scholar 

  34. Li, H., & Gu, K. (2008). Discretized Lyapunov-Krasovskii functional for systems with multiple delay channels. In the Invited Session “Time-Delay Systems: From Theory to Applications,” 2008 ASME Dynamic Systems and Control Conference, Ann Arbor, MI, October 20–22.

    Google Scholar 

  35. Martinez-Amores, P. (1979). Periodic solutions of coupled systems of differential and difference equations. Annali di Matematica Pura ed Applicata, 121(1), 171–186.

    Article  MATH  MathSciNet  Google Scholar 

  36. Niculescu, S.-I. (2001). Delay effects on stabilityA robust control approach, Lecture Notes in Control and Information Science, 269. London: Springer.

    Google Scholar 

  37. Ochoa, G., & Kharitonov, V. L. (2005). Lyapunov matrices for neutral type of time delay systems. Second International Conference on Electrical & Electronics Engineering and Eleventh Conference on Electrical Engineering, Mexico City, September 7–9.

    Google Scholar 

  38. Ochoa, G., & Mondie, S. (2007). Approximations of Lyapunov-Krasovskii functionals of complete type with given cross terms in the derivative for the stability of time-delay systems. 46th Conference on Decision and Control, New Orleans, LA, December 12–14.

    Google Scholar 

  39. Olgac, N., & Sipahi, R. (2002) An exact method for the stability analysis of time-delayed LTI systems. IEEE Transactions on Automatic Control, 47(5): 793–797.

    Article  MathSciNet  Google Scholar 

  40. Peet, M., Papachristodoulou A., & Lall, S. (2006). On positive forms and the stability of linear time-delay systems. 45th Conference on Decision and Control, San Diego, CA, December 13–15.

    Google Scholar 

  41. Pepe, P., & Verriest, E. I. (2003). On the stability of coupled delay differential and continuous time difference equations. IEEE Transactions on Automatic Control, 48(8), 1422–1427.

    Article  MathSciNet  Google Scholar 

  42. Pepe, P. (2005). On the asymptotic stability of coupled delay differential and continuous time difference equations. Automatica, 41(1), 107–112.

    Article  MATH  MathSciNet  Google Scholar 

  43. Pepe, P., Jiang, Z.-P., & Fridman, E. (2007). A new Lyapunov-Krasovskii methodology for coupled delay differential and difference equations. International Journal of Control, 81(1), 107–115.

    Article  MathSciNet  Google Scholar 

  44. 44.Rasvan, V. (1973). Absolute stability of a class of control proceses described by functional differential equations of neutral type. In: Janssens, P., Mawhin, J., & Rouche N. (Eds), Equations Differentielles et Fonctionelles Nonlineaires. Paris: Hermann.

    Google Scholar 

  45. Rǎsvan, V. (1998). Dynamical systems with lossless propagation and neutral functional differential equations. Proceedings of MTNS 98, Padoue, Italy, 1998, 527–531.

    Google Scholar 

  46. Rǎsvan, V. (2006). Functional differential equations of lossless propagation and almost linear behavior, Plenary Lecture. Sixth IFAC Workshop on Time-Delay Systems, L'Aquila, Italy.

    Google Scholar 

  47. Rǎsvan, V., & Niculescu, S.-I. (2002). Oscillations in lossless propagation models: a Liapunov-Krasovskii approach. IMA Journal of Mathematical Control and Information, 19, 157–172.

    Article  MathSciNet  Google Scholar 

  48. Silkowskii, R. A. (1976). Star-shaped regions of stability in hereditary systems. Ph.D. thesis, Brown University, Providence, RI, June.

    Google Scholar 

  49. Sontag, E. D. (1989). Smooth stabilization implies coprime factorization. IEEE Transactions on Automatic Control, 34, 435–443.

    Article  MATH  MathSciNet  Google Scholar 

  50. Sontag, E. D. (1990). Further facts about input to state stabilization. IEEE Transactions on Automatic Control, 35, 473–476.

    Article  MATH  MathSciNet  Google Scholar 

  51. Stépán, G. (1989). Retarded dynamical systems: stability and characteristic function. New York: Wiley.

    Google Scholar 

  52. Teel, A. R. (1998). Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem. IEEE Transactions on Automatic Control, 43(7), 960–964.

    Article  MATH  MathSciNet  Google Scholar 

  53. Walton, K., & Marshall, J. E. (1987). Direct Method for TDS Stability Analysis. IEE Proceedings, Part D, 134(2), 101–107.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keqin Gu .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag US

About this chapter

Cite this chapter

Li, H., Gu, K. (2009). Lyapunov-Krasovskii Functional Approach for Coupled Differential-Difference Equations with Multiple Delays. In: Delay Differential Equations. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85595-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-85595-0_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-85594-3

  • Online ISBN: 978-0-387-85595-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics