Skip to main content

Identification and Distribution of Uncoupling Protein Isoforms in the Normal and Diabetic Rat Kidney

  • Conference paper
Oxygen Transport to Tissue XXX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 645))

Abstract

Uncoupling protein (UCP)-2 and -3 are ubiquitously expressed throughout the body but there is currently no information regarding the expression and distribution of the different UCP isoforms in the kidney. Due to the known cross-reactivity of the antibodies presently available for detection of UCP-2 and -3 proteins, we measured the mRNA expression of UCP-1, -2 and -3 in the rat kidney in order to detect the kidney-specific UCP isoforms. Thereafter, we determined the intrarenal distribution of the detected UCP isoforms using immunohistochemistry. Thereafter, we compared the protein levels in control and streptozotocin-induced diabetic rats using Western blot. Expressions of the UCP isoforms were also performed in brown adipose tissue and heart as positive controls for UCP-1 and 3, respectively.

UCP-2 mRNA was the only isoform detected in the kidney. UCP-2 protein expression in the kidney cortex was localized to proximal tubular cells, but not glomerulus or distal nephron. In the medulla, UCP-2 was localized to cells of the medullary thick ascending loop of Henle, but not to the vasculature or parts of the nephron located in the inner medulla. Western blot showed that diabetic kidneys have about 2.5-fold higher UCP-2 levels compared to controls.

In conclusion, UCP-2 is the only isoform detectable in the kidney and UCP-2 protein can be detected in proximal tubular cells and cells of the medullary thick ascending loop of Henle. Furthermore, diabetic rats have increased UCP-2 levels compared to controls, but the mechanisms underlying this increase and its consequences warrants further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Nishikawa, D. Edelstein, and M. Brownlee, The missing link: a single unifying mechanism for diabetic complications, Kidney Int Suppl 77(S26-30 (2000).

    Article  PubMed  CAS  Google Scholar 

  2. R. P. Robertson, Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes, J Biol Chem 279(41), 42351-4 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. M. Brownlee, Biochemistry and molecular cell biology of diabetic complications, Nature 414(6865), 813-20 (2001).

    Article  PubMed  CAS  Google Scholar 

  4. B. B. Lowell, and G. I. Shulman, Mitochondrial dysfunction and type 2 diabetes, Science 307(5708), 384-7 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. S. S. Korshunov, V. P. Skulachev, and A. A. Starkov, High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett 416(1), 15-8 (1997).

    Article  PubMed  CAS  Google Scholar 

  6. S. S. Liu, Generating, partitioning, targeting and functioning of superoxide in mitochondria, Biosci Rep 17(3), 259-72 (1997).

    Article  PubMed  CAS  Google Scholar 

  7. M. D. Brand, Uncoupling to survive? The role of mitochondrial inefficiency in ageing, Exp Gerontol 35(6-7), 811-20 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. T. Nishikawa, D. Edelstein, X. L. Du, S. Yamagishi, T. Matsumura, Y. Kaneda, M. A. Yorek, D. Beebe, P. J. Oates, H. P. Hammes, I. Giardino, and M. Brownlee, Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage, Nature 404(6779), 787-90 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. P. Jezek, Possible physiological roles of mitochondrial uncoupling proteins–UCPn, Int J Biochem Cell Biol 34(10), 1190-206 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. A. G. Dulloo, and S. Samec, Uncoupling proteins: their roles in adaptive thermogenesis and substrate metabolism reconsidered, Br J Nutr 86(2), 123-39 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. A. Negre-Salvayre, C. Hirtz, G. Carrera, R. Cazenave, M. Troly, R. Salvayre, L. Penicaud, and L. Casteilla, A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation, Faseb J 11(10), 809-15 (1997).

    PubMed  CAS  Google Scholar 

  12. C. Duval, A. Negre-Salvayre, A. Dogilo, R. Salvayre, L. Penicaud, and L. Casteilla, Increased reactive oxygen species production with antisense oligonucleotides directed against uncoupling protein 2 in murine endothelial cells, Biochem Cell Biol 80(6), 757-64 (2002).

    Article  PubMed  CAS  Google Scholar 

  13. K. S. Echtay, E. Winkler, K. Frischmuth, and M. Klingenberg, Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone), Proc Natl Acad Sci U S A 98(4), 1416-21 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. A. M. Vincent, J. A. Olzmann, M. Brownlee, W. I. Sivitz, and J. W. Russell, Uncoupling proteins prevent glucose-induced neuronal oxidative stress and programmed cell death, Diabetes 53(3), 726-34 (2004).

    Article  PubMed  CAS  Google Scholar 

  15. F. Palm, J. Cederberg, P. Hansell, P. Liss, and P. O. Carlsson, Reactive oxygen species cause diabetesinduced decrease in renal oxygen tension, Diabetologia 46(8), 1153-60 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. M. Friederich, J. Olerud, A. Fasching, P. Liss, P. Hansell, and F. Palm, Uncoupling protein 2 in diabetic kidneys: Increased protein expression correlates to increased non-transport related oxygen consumption, Adv Exp Med Biol In press((2007).

    Google Scholar 

  17. A. Tojo, M. Kimoto, and C. S. Wilcox, Renal expression of constitutive NOS and DDAH: separate effects of salt intake and angiotensin, Kidney Int 58(5), 2075-83 (2000).

    Article  PubMed  CAS  Google Scholar 

  18. F. Palm, and P. O. Carlsson, Thick ascending tubular cells in the loop of Henle: regulation of electrolyte homeostasis, Int J Biochem Cell Biol 37(8), 1554-9 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. F. Palm, P. Hansell, G. Ronquist, A. Waldenstrom, P. Liss, and P. O. Carlsson, Polyol-pathway-dependent disturbances in renal medullary metabolism in experimental insulin-deficient diabetes mellitus in rats, Diabetologia 47(7), 1223-31 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. A. Korner, A. C. Eklof, G. Celsi, and A. Aperia, Increased renal metabolism in diabetes. Mechanism and functional implications, Diabetes 43(5), 629-33 (1994).

    Article  PubMed  CAS  Google Scholar 

  21. F. Palm, L. Nordquist, and D. G. Buerk, Nitric oxide in the kidney; direct measurements of bioavailable renal nitric oxide, Adv Exp Med Biol 599(117-23 (2007).

    Article  PubMed  Google Scholar 

  22. K. S. Echtay, D. Roussel, J. St-Pierre, M. B. Jekabsons, S. Cadenas, J. A. Stuart, J. A. Harper, S. J. Roebuck, A. Morrison, S. Pickering, J. C. Clapham, and M. D. Brand, Superoxide activates mitochondrial uncoupling proteins, Nature 415(6867), 96-9 (2002).

    Article  PubMed  CAS  Google Scholar 

  23. K. S. Echtay, T. C. Esteves, J. L. Pakay, M. B. Jekabsons, A. J. Lambert, M. Portero-Otin, R. Pamplona, A. J. Vidal-Puig, S. Wang, S. J. Roebuck, and M. D. Brand, A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling, Embo J 22(16), 4103-10 (2003).

    Article  PubMed  CAS  Google Scholar 

  24. F. Palm, D. G. Buerk, P. O. Carlsson, P. Hansell, and P. Liss, Reduced nitric oxide concentration in the renal cortex of streptozotocin-induced diabetic rats: effects on renal oxygenation and microcirculation, Diabetes 54(11), 3282-7 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Friederich, M., Nordquist, L., Olerud, J., Johansson, M., Hansell, P., Palm, F. (2009). Identification and Distribution of Uncoupling Protein Isoforms in the Normal and Diabetic Rat Kidney. In: Liss, P., Hansell, P., Bruley, D.F., Harrison, D.K. (eds) Oxygen Transport to Tissue XXX. Advances in Experimental Medicine and Biology, vol 645. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85998-9_32

Download citation

Publish with us

Policies and ethics