Skip to main content

Abstract

Because sol-gel is a convenient technique for the fabrication of oxide coatings, many researchers have investigated its application in the fabrication of optical waveguides. Optical fibers can also be manufactured using sol-gel preforms [1, 2], but we will concern ourselves here with planar geometries. Light will be guided in any transparent dielectric material surrounded by a dielectric of lower refractive index. Thus the simplest thin film waveguide geometry, and hence the most studied, is obtained by depositing a coating on a transparent substrate of lower index than the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.B. MacChesney, D.W. Johnson, S. Bhandarkar, M.P. Bohrer, J.W. Fleming, E.M. Monberg, D.J. Trevor, Optical fibers by a hybrid process using sol-gel silica overcladding tubes, J. NonCryst. Sol., 226, 232 (1998)

    Article  CAS  Google Scholar 

  2. S. Shibata, Sol-gel derived silica preforms for optical fibers, J. Non-Cryst. Sol., 178, 272 (1994)

    Article  CAS  Google Scholar 

  3. H. Kogelnick, Theory of Dielectric Waveguides, in: Integrated Optics, T. Tamir (editor), Berlin: Springer-Verlag (1975)

    Google Scholar 

  4. E.M. Yeatman, Sol-gel fabrication for optical communication components: prospects and progress, in: Proc. SPIE, 68, 119 (1997)

    Google Scholar 

  5. B.D. MacCraith, C. McDonagh, A.K. McEvoy. T. Butler, G. O’Keeffe, V. Murphy, Optical chemical sensors based on sol-gel materials: recent advances and critical issues, J. Sol-Gel Sci & Tech, 8, 1053 (1997)

    Article  CAS  Google Scholar 

  6. R. Ulrich, H.P. Weber, Solution-deposited thin films as passive and active light-guides, Appl. Opt., 11, 428 (1972)

    Article  CAS  Google Scholar 

  7. P.P. Herrmann, D. Wildmann, Fabrication of planar dielectric waveguides with high optical damage threshold, J. Quant. Elect., 19, 1735 (1983)

    Article  Google Scholar 

  8. R.L. Roncone, L.A. Weller-Brophy, B.J.J. Zelinski, Sol-gel synthesis of planar optical waveguides and integrated components, in: Ultrastructure Processing of Advanced Materials, D.R. Uhlmann, D.R. Ulrich (editors), New York: John Wiley & Sons (1992)

    Google Scholar 

  9. L. Weisenbach, B.J.J. Zelinski, J. O’Kelly, R.L. Roncone, J.J. Burke, The influence of processing variables on the optical properties of SiO2-TiO2 planar waveguides, in: Proc. SPIE, 1590, 50 (1991)

    Google Scholar 

  10. L. Yang, S.S. Saavedra, N.R. Armstrong, J. Hayes, Fabrication and characterisation of low-loss, sol-gel planar waveguides, Anal. Chem., 66, 1254 (1994)

    CAS  Google Scholar 

  11. A.S. Holmes, R.R.A. Syms, LiMing, M. Green, Fabrication of buried channel waveguides on silicon substrates using spin-on glass,Appl. Opt., 32, 4916 (1993)

    Article  CAS  Google Scholar 

  12. M. Green, R.R.A. Syms, A.S. Holmes, K. Ueki, H1. Yanagawa, Method of manufacturing silica waveguide optical components, U.S. patent No. 5378256 (1995)

    Google Scholar 

  13. R.R.A. Syms, V. Schneider, W. Huang, A.S. Holmes, Low loss achieved in sol-gel based silicaon-silicon integrated optics using borophosphosilicate glass,Electr. Lett., 31, 1833 (1995)

    Article  CAS  Google Scholar 

  14. R.R.A. Syms, W. Huang, V. Schneider, Optimisation of born-phosphosilicate glass compositions for silica-on-silicon integrated optical circuits fabricated by the sol-gel process,Electr. Lett., 32, 1233 (1996)

    Article  CAS  Google Scholar 

  15. E.M. Yeatman, K. Pita, M.M. Ahmad, Strip-loaded high-confinement waveguides for photonic applications, J. Sol-Gel Sci & Tech, 13, 517 (1998)

    Article  CAS  Google Scholar 

  16. Y. Sorek, R. Reisfeld, Sol-gel glass waveguides prepared at low temperature, Appl. Phys. Lett., 63, 3256 (1999)

    Article  Google Scholar 

  17. H. Schmidt, Inorganic-organic composites for optoelectronics, in: Sol-gel optics: processing and applications, L.C. Klein (editor), Kluwer Academic Publishers (1994)

    Google Scholar 

  18. C.Y. Li, J. Chisham, M. Andrews, S.I. Najaf, J.D. MacKenzie, N. Peyghambarian, Sol-gel integrated optical coupler by ultraviolet light imprinting,Electr. Lett., 31, 271 (1995)

    Article  CAS  Google Scholar 

  19. M.A. Fardad, M. Fallahi, Organic-inorganic materials for integrated optoelectronics, Flectr.Lett., 34, 1940 (1998)

    Article  CAS  Google Scholar 

  20. H. Krug, N. Merl, H. Schmidt, Fine patterning of thin sol-gel films, J. Non-Cryst. Solids, 147&148, 447 (1992)

    Article  Google Scholar 

  21. S. Pelli, G.C. Righini, A. Verciani, M. Guglielmi, A. Martucci, A. Scaglione, Laser writing of optical waveguides in sol-gel films, in: Proc. SPIE, 2213, 58 (1994)

    Google Scholar 

  22. F.G. Araujo, T. Chia, L.L Hench, Process of making channel waveguides in gel-silica, U.S. Patent No. 5634955 (1997)

    Google Scholar 

  23. K.D. Simmons, G.I. Stegeman, B.G. Potter, J.H. Simmons, Photosensitivity in germane-silicate sol-gel thin films, J. Non-Cryst. Solids, 179, 254 (1994)

    Article  CAS  Google Scholar 

  24. P.T. Guerreiro, S.G. Lee, A.S. Rodrigues, Y.Z. Hu, E.M. Wright, S.I. Najafi, J.D. Mackenzie, N. Peyghambarian, Femtosecond pulse propagation near a two-photon transition in a semiconductor quantum dot waveguide, Optics Lett., 21, 659 (1996)

    Article  CAS  Google Scholar 

  25. M. Guglielmi, A. Martucci, R.M. Almeida, H.C. Vasconcelos, E.M. Yeatman, E.J.C. Dawnay, M.A. Fardad, Spinning deposition of silica and silica-titania optical coatings: A round robin test, .1. Mater. Res., 13, 731 (1998)

    Article  CAS  Google Scholar 

  26. Y.P. Li, C.H. Henry, Silica-based optical integrated circuits, IEE Proc.-Optoelectron., 143, 263 (1996)

    Article  Google Scholar 

  27. M. Kawachi, Recent progress in silica-based planar lightwave circuits on silicon, IEE Proc. Optoelectron., 143, 257 (1996)

    Article  CAS  Google Scholar 

  28. E.M. Yeatman, M.M. Ahmad, O. McCarthy, A. Vannucci, P. Gastaldo, D. Barbier, D. Mongardien, C. Moronvalle, Optical gain in Er-doped SiO2-TiO2 waveguides fabricated by the solgel technique,Optics. Commun., 164, 19 (1999)

    Article  CAS  Google Scholar 

  29. M.A. Fardad, E.M. Yeatman, E.J.C. Dawnay, Mino Green, J. Fick, M. Guntau, G. Vitrant, Fabrication and characterisation of a CdS-doped silica-on-silicon planar waveguide,IEE Proc. Optoelectronics , 143, 298 (1996)

    Article  CAS  Google Scholar 

  30. J.R. Busch, S.D. Ramamurthi, S.L. Swartz, V.E. Wood, Linear electro-optic response in sol-gel PZT planar waveguides,Electr. Lett., 28, 1591 (1992)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yeatman, E.M. (2004). Thin-Film Optical Waveguides. In: Aegerter, M.A., Mennig, M. (eds) Sol-Gel Technologies for Glass Producers and Users. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-88953-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-88953-5_42

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5455-8

  • Online ISBN: 978-0-387-88953-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics