Skip to main content

Human Mitochondrial Mutations and Repair

  • Chapter
  • First Online:
Plant Mitochondria

Part of the book series: Advances in Plant Biology ((AIPB,volume 1))

Abstract

One of the unique features of mitochondria is that they have their own genome. Mitochondrial DNA, just like its counterpart in the nucleus, is constantly exposed to damaging agents such as ionizing radiation, environmental toxins, as well as many therapeutic drugs. Mitochondrial DNA is also the main target of endogenous ROS. Oxidative damage and mutations are common in mtDNA. A wide spectrum of pathogenic mutations of mtDNA has been demonstrated and associated with common diseases such as diabetes, neurodegeneration, cancer, and aging. Although some of these mutations are inherited, more and more attention is being focused on the accumulation of mitochondrial DNA mutations in somatic cells, particularly terminally differentiated cells. Mutations can be the results of unrepaired damage to mtDNA. Evidence now clearly shows that mitochondria contain the machinery to repair the damage to their genomes caused by certain endogenous or exogenous damaging agents. In this review we provide general information about the human mitochondrial genome and susceptibility of mtDNA to damage, show the association of human mtDNA mutations with aging and diseases, describe the pathways and the proteins involved in mammalian mtDNA repair in normal and pathologic states, and discuss how modulation of mtDNA repair could be a powerful tool to better understanding of the biologic significance of mtDNA repair mechanisms for cellular defenses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4NQO:

4-Nitroquinoline-1 Oxide

8-oxoG:

8-Oxoguanine

AD:

Alzheimer’s Disease

ALS:

Amyotrophic Lateral Sclerosis

APE:

Apurinic/Apyrimidinic Endonuclease

ATP:

Adenosine Triphosphate

BER:

Base Excision Repair

bp:

Base Pair

COX:

Cytochrome C Oxidase

DR:

Direct Repair/Reversal

dsb:

Double Strand Break

ETC:

Electron Transport Chain

HD:

Huntington’s Disease

HR:

Homologous Recombination

LPBER:

Long-Patch Base Excision Repair

MELAS:

Mitochondrial Encephalopathy Lactic Acidosis and Stroke

MERRF:

Myoclonic Epilepsy with Ragged Red Fibers

MGMT:

O6-Methy Guanine DNA Methyltransferase

MMR:

Mismatch Repair

MnSOD:

Manganese Superoxide Dismutase

MPG:

N-Methylpurine DNA Glycosylase

mtDNA:

Mitochondrial DNA

mtSSB:

Mitochondrial Single Stranded Binding Protein

MYH:

MutY Homolog DNA Glycosylase

nDNA:

Nuclear DNA

NER:

Nucleotide Excision Repair

NHEJ:

Nonhomologous End Joining

OGG1:

8-Oxo-Guanine DNA Glycosylase

PD:

Parkinson’s Disease

pol γ:

DNA Polymerase Gamma

ROS:

Reactive Oxygen Species

SOD:

Superoxide Dismutase

TFAM:

Transcriptional Factor A

tg:

Thymine Glycol

tRNA:

Transfer RNA

UNG:

Uracil DNA Glycosylase

References

  • Akbari, M., Visnes, T., Krokan, H. E., Otterlei, M. 2008. Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis. DNA Repair (Amst.) 7(4):605–616.

    Article  CAS  Google Scholar 

  • Alberio, S., Mineri, R., Tiranti, V., Zeviani, M. 2007. Depletion of mtDNA: syndromes and genes. Mitochondrion 7:6–12.

    Article  PubMed  CAS  Google Scholar 

  • Alexeyev, M. F., Ledoux, S. P., Wilson, G. L. 2004. Mitochondrial DNA and aging. Clin. Sci. (Lond.) 107(4):355–264.

    Article  CAS  Google Scholar 

  • Ames, B. N., Shigenaga, M. K., Hagen, T. M. 1993. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl Acad. Sci. USA 90:7915–7922.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, C. T., Friedberg, E. C. 1980. The presence of nuclear and mitochondrial uracil-DNA glycosylase in extracts of human KB cells. Nucleic Acids Res. 8(4):875–888.

    PubMed  CAS  Google Scholar 

  • Andreyev, A. Yu., Kushnareva, Yu. E., Starkov, A. A. 2005. Mitochondrial metabolism of reactive oxygen species. Biochemistry (Moscow) 70(2):200–214.

    Article  CAS  Google Scholar 

  • Anson, R. M., Hudson, E., Bohr, V. A. 2000. Mitochondrial endogenous oxidative damage has been overestimated. FASEB J. 14:355–360.

    PubMed  CAS  Google Scholar 

  • Atamna, H., Frey, W. H. 2nd. 2007. Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer’s disease. Mitochondrion 7(5):297–310.

    Article  PubMed  CAS  Google Scholar 

  • Attardi, G., Schatz, G. 1988. Biogenesis of mitochondria. Annu. Rev. Cell Biol. 4:289–333.

    Article  PubMed  CAS  Google Scholar 

  • Bacman, S. R., Williams, S. L., Moraes, C. T. 2009. Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Res. 37(13):4218–4226.

    Article  PubMed  CAS  Google Scholar 

  • Bandy, B., Davidson, A. J. 1990. Mitochondrial mutations may increase oxidative stress: implication for carcinogenesis and aging? Free Radic. Biol. Med. 8:523–539.

    Article  PubMed  CAS  Google Scholar 

  • Banoei, M. M., Houshmand, M., Panahi, M. S., Shariati, P., Rostami, M., Manshadi, M. D., Majidizadeh, T. 2007. Huntington’s disease and mitochondrial DNA deletions: event or regular mechanism for mutant huntingtin protein and CAG repeats expansion?! Cell. Mol. Neurobiol. 27(7):867–875.

    Article  PubMed  CAS  Google Scholar 

  • Barja, G., Herrero, A. 2000. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J. 14:312–318.

    PubMed  CAS  Google Scholar 

  • Bauer, M. F., Gempel, K., Hofman, S., Jaksch, M., Philbrook, C., Gerbitz, K. D. 1999. Mitochondrial disorders. A diagnostic challenge in clinical chemistry. Clin. Chem. Lab. Med. 37:855–876.

    Article  PubMed  CAS  Google Scholar 

  • Bender, A., Krishnan, K. J., Morris, C. M., Taylor, G. A., Reeve, A. K., Perry, R. H., Jaros, E., Hersheson, J. S., Betts, J., Klopstock, T., Taylor, R. W., Turnbull, D. M. 2006. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat. Genet. 38(5):515–517.

    Article  PubMed  CAS  Google Scholar 

  • Berdanier, C. D., Everts, H. B. 2001. Mitochondrial DNA in aging and degenerative disease. Mutat. Res. 475:169–184.

    Article  PubMed  CAS  Google Scholar 

  • Berneburg, M., Kamenisch, Y., Krutmann, J., Rocken, M. 2006. “To repair or not to repair – no longer a question”: repair of mitochondrial DNA shielding against age and cancer. Exp. Dermatol. 15:1005–1015.

    Article  PubMed  CAS  Google Scholar 

  • Bjelland, S., Seeberg, E. 2003. Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat. Res. 531:37–80.

    Article  PubMed  CAS  Google Scholar 

  • Bogdanov, M., Brown, R. H., Matson, W., Smart. R., Hayden, D., O’Donnell, H., Flint Beal M., Cudkowicz, M. 2000. Increased oxidative damage to DNA in ALS patients. Free Radic. Biol. Med. 29:652–658.

    Article  PubMed  CAS  Google Scholar 

  • Bohr, V. A. 2002a. DNA damage and its processing. Relation to human disease. J. Inherit. Metab. Dis. 25:215–222.

    Article  PubMed  CAS  Google Scholar 

  • Bohr, V. A. 2002b. Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radic. Biol. Med. 32(9):804–812.

    Article  PubMed  CAS  Google Scholar 

  • Brandon, M., Baldi, P., Wallace, D. C. 2006. Mitochondrial mutations in cancer. Oncogene 25(34):4647–4662.

    Article  PubMed  CAS  Google Scholar 

  • Brown, W. M., George, M. Jr., Wilson, A. C. 1979. Rapid evolution of animal mitochondrial DNA. Proc. Natl Acad. Sci. USA 76:1967–1971.

    Article  PubMed  CAS  Google Scholar 

  • Cadenas, E., Davies, K. J. A. 2000. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 29:222–230.

    Article  PubMed  CAS  Google Scholar 

  • Carew, J. S., Huang, P. 2002. Mitochondrial defects in cancer. Mol. Cancer 1:9.

    Article  PubMed  Google Scholar 

  • Cavelier, L., Johannisson, A., Gyllensten, U. 2000. Analysis of mtDNA copy number and composition of single mitochondrial particles using flow cytometry and PCR. Exp. Cell. Res. 259:79–85.

    Article  PubMed  CAS  Google Scholar 

  • Chan, S. S., Copeland, W. C. 2009. DNA polymerase gamma and mitochondrial disease: understanding the consequence of POLG mutations. Biochim. Biophys. Acta. 1787(5):312–319.

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee, A., Mambo, E., Sidransky, D. 2006a. Mitochondrial DNA mutations in human cancer. Oncogene 25(34):4663–4674.

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee, A., Mambo, E., Zhang, Y., DeWeese, T., Sidransky, D. 2006b. Targeting of mutant hogg1 in mammalian mitochondria and nucleus: effect on cellular survival upon oxidative stress. BMC Cancer 6:235.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C. M., Wu, Y. R., Cheng, M. L., Liu, J. L., Lee, Y. M., Lee, P. W., Soong, B. W., Chiu, D. T. 2007. Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington’s disease patients. Biochem. Biophys. Res. Commun. 359(2):335–340.

    Article  PubMed  CAS  Google Scholar 

  • Clayton, D. A., Vinograd, J. 1967. Circular dimer and catenate forms of mitochondrial DNA in human leukaemic leucocytes. Nature 216(5116):652–657.

    Article  PubMed  CAS  Google Scholar 

  • Clayton, D. A., Doda, J. N., Friedberg, E. C. 1974. The absence of a pyrimidine dimmer repair mechanism in mammalian mitochondria. Proc. Natl Acad. Sci. USA 71:2777–2778.

    Article  PubMed  CAS  Google Scholar 

  • Cooke, M. S., Evans, M. D., Dizdaroglu, M., Lunec, J. 2003. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 17:1195–1214.

    Article  PubMed  CAS  Google Scholar 

  • Croteau, D. L., Stierum, R. H., Bohr, V. A. 1999. Mitochondrial DNA repair pathway. Mutat. Res. 434:137–148.

    Article  PubMed  CAS  Google Scholar 

  • Davydov, V., Hansen, L. A., Shackelford, D. A. 2003. Is DNA repair compromised in Alzheimer’s disease. Neurobiol. Aging 24:953–968.

    Article  PubMed  CAS  Google Scholar 

  • de Souza-Pinto, N. C., Hogue, B. A., Bohr, V. A. 2001a. DNA repair and aging in mouse liver: 8-oxoG glycosylase activity increase in mitochondrial but not in nuclear extracts. Free Radic. Biol. Med. 30:916–923.

    Article  PubMed  Google Scholar 

  • de Souza-Pinto, N. C., Eide, L., Hogue, B. A., Thybo, T., Stevnsner, T., Seeberg, E., Klungland, A., Bohr, V. A. 2001b. Repair of 8-oxodeoxyguanosine lesions in mitochondrial DNA depends on the oxoguanine DNA glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial DNA of OGG1-defective mice. Cancer Res. 61(14):5378–5381.

    PubMed  Google Scholar 

  • de Souza-Pinto, N. C., Mason, P. A., Hashiguchi, K., Weissman, L., Tian, J., Guay, D., Lebel, M., Stevnsner, T. V., Rasmussen, L. J., Bohr,. V. A. 2009. Novel DNA mismatch-repair activity involving YB-1 in human mitochondria. DNA Repair (Amst.) 8(6):704–719.

    Article  CAS  Google Scholar 

  • Demple, B., Harrison, L. 1994. Repair of oxidative damage to DNA: enzymology and biology. Annu. Rev. Biochem. 63:915–48.

    Article  PubMed  CAS  Google Scholar 

  • DiMauro, S., Moraes, C. T. 1993. Mitochondrial encephalomyopathies. Arch. Neurol. 50(11):1197–208.

    Article  PubMed  CAS  Google Scholar 

  • Dobson, A. W., Xu, Y., Kelley, M. R., LeDoux, S. P., Wilson, G. L. 2000. Enhanced mtDNA repair and cellular survival following oxidative stress by targeting the hOGG repair enzyme to mitochondria. J. Biol. Chem. 275:37518–37523.

    Article  PubMed  CAS  Google Scholar 

  • Dobson, A. W., Grishko, V., LeDoux, S. P., Kelley, M. R., Wilson, G. L., Gillespie, M. N. 2002. Enhanced mtDNA repair capacity protects pulmonary artery endothelial cells from oxidant-mediated death. Am. J. Physiol. Lung Cell. Mol. Physiol. 283(1):L205–210.

    PubMed  CAS  Google Scholar 

  • Driggers, W. J., LeDoux, S. P., Wilson, G. L. 1993. Repair of oxidative damage within the mitochondrial DNA of RINr 38 cells. J. Biol. Chem. 268:22042–22045.

    PubMed  CAS  Google Scholar 

  • Druzhyna, N. M., Hollensworth, S. B., Kelley, M. R., Wilson, G. L., LeDoux, S. P. 2003. Targeting human 8-Oxoguanine glycosylase to mitochondria of oligodendrocytes protects against menadione-induced oxidative stress. Glia 42:370–378.

    Article  PubMed  Google Scholar 

  • Druzhyna, N. M., Musiyenko, S. I., Wilson, G. L., LeDoux, S. P. 2005. Cytokines induce NO-mediated mtDNA damage and apoptosis in oligodendrocytes. Protective role of targeting 8-oxoguanine glycosylase to mitochondria. J. Biol. Chem. 280:21673–21679.

    Article  PubMed  CAS  Google Scholar 

  • Elson, J. L., Herrnstadt, C., Preston, G., Thal, L., Morris, C. M., Edwardson, J. A., Beal, M. F., Turnbull, D. M., Howell, N. 2006. Does the mitochondrial genome play a role in the etiology of Alzheimer’s disease? Hum. Genet. 119(3):241–254.

    Article  PubMed  CAS  Google Scholar 

  • Endres, M., Biniszkiewicz, D., Sobol, R. W., Harms, C., Ahmadi, M., Lipski, A., Katchanov, J., Mergenthaler, P., Dirnagl, U., Wilson, S. H., Meisel, A., Jaenisch, R. 2004. Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase. J. Clin. Invest. 113(12):1711–1721.

    PubMed  CAS  Google Scholar 

  • Englander, E. W., Hu, Z., Sharma, A., Lee, H. M., Wu, Z. H., Greeley, G. H. 2002. Rat MYH, a glycosylase for repair of oxidatively damaged DNA, has brain-specific isoforms that localize to neuronal mitochondria. J. Neurochem. 83(6):1471–1480.

    Article  PubMed  CAS  Google Scholar 

  • Fishel, M. L., Seo, Y. R., Smith, M. L., Kelley, M. R. 2003. Imbalancing the DNA base excision repair pathway in the mitochondria; targeting and overexpressing N-Methylpurine DNA glycosylase in mitochondria leads to enhanced cell killing. Cancer Res. 63:608–615.

    PubMed  CAS  Google Scholar 

  • Fliss, M. S., Usadel, H., Caballero, O. L., Wu, L., Buta, M. R., Eleff, S. M., Jen, J., Sidransky, D. 2000. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287(5460):2017–2019.

    Article  PubMed  CAS  Google Scholar 

  • Fontenay, M., Cathelin, S., Amiot, M., Gyan, E., Solary, E. 2006. Mitochondria in hematopoiesis and hematological diseases. Oncogene 25(34):4757–4767.

    Article  PubMed  CAS  Google Scholar 

  • Frossi, B., Tell, G., Spessotto, P., Colombatti, A., Vitale, G., Pucillo, C. 2002. H(2)O(2) induces translocation of APE/Ref-1 to mitochondria in the Raji B-cell line. J. Cell. Physiol. 193(2):180–186.

    Article  PubMed  CAS  Google Scholar 

  • Garrido, N., Griparic, L., Jokitalo, E., Wartiovaara, J., van der Bliek, A. M., Spelbrink, J. N., 2003. Composition and dynamics of human mitochondrial nucleoids. Mol. Biol. Cell 14:1583–1596.

    Article  PubMed  CAS  Google Scholar 

  • Gorogawa, S., Kajimoto, Y., Umayahara, Y., Kaneto, H., Watada, H., Kuroda, A., Kawamori, D., Yasuda, T., Matsuhisa, M., Yamasaki, Y., Hori, M. 2002. Probucol preserves pancreatic beta-cell function through reduction of oxidative stress in type 2 diabetes. Diabetes Res. Clin. Pract. 57(1):1–10.

    Article  Google Scholar 

  • Graziewicz, M. A., Longley, M. J., Copeland, W. C. 2006. DNA Polymerase gamma in mitochondrial DNA replication and repair. Chem. Rev. 106:383–405.

    Article  PubMed  CAS  Google Scholar 

  • Greaves, L. C., Turnbull, D. M. 2009. Mitochondrial DNA mutations and ageing. Biochim. Biophys. Acta. 1790(10):1015–1020.

    Article  PubMed  CAS  Google Scholar 

  • Gredilla, R., Garm, C., Holm, R., Bohr, V. A., Stevnsner, T. 2008. Differential age-related changes in mitochondrial DNA repair activities in mouse brain regions. doi:10.1016/j.neurobiolaging2008.07004.

    Google Scholar 

  • Gross, N. J., Getz, G. S., Rabinowitz, M. 1969. Apparent turnover of mitochondrial deoxyribonucleic acid and mitochondrial phospholipids in the tissues of the rat. J. Biol. Chem. 244:1552–1562.

    PubMed  CAS  Google Scholar 

  • Gu, M., Cooper, J. M., Taanman, J. W., Schapira, A. H. 1998. Mitochondrial DNA transmission of the mitochondrial defect in Parkinson’s disease. Ann. Neurol. 44(2):177–186.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, S., 2001. Molecular steps of death receptor and mitochondrial pathways of apoptosis. Life Sci. 69(25–26):2957–2964.

    Article  PubMed  CAS  Google Scholar 

  • Gyllensten, U., Wharton, D., Josefsson, A., Wilson, A. C. 1991. Parental inheritance of mitochondrial DNA in mice. Nature 352:255–257.

    Article  PubMed  CAS  Google Scholar 

  • Hamblet, N. S., Castora, F. J. 1997. Elevated levels of the Kearns-Sayre syndrome mitochondrial DNA deletion in temporal cortex of Alzheimer’s patients. Mutat. Res. 379(2):253–262.

    Article  PubMed  CAS  Google Scholar 

  • Hamblet, N. S., Ragland, B., Ali, M., Conyers, B., Castora, F. J. 2006. Mutations in mitochondrial-encoded cytochrome c oxidase subunits I, II, and III genes detected in Alzheimer’s disease using single-strand conformation polymorphism. Electrophoresis 27(2):398–408.

    Article  PubMed  CAS  Google Scholar 

  • Hance, N., Ekstrand, M. I., Trifunovic, A. 2005 Mitochondrial DNA polymerase gamma is essential for mammalian embryogenesis. Hum. Mol. Genet. 14(13):1775–1883.

    Article  PubMed  CAS  Google Scholar 

  • Harman, D. 1956. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11:298–300.

    Article  PubMed  CAS  Google Scholar 

  • Harman, D. 2001. Aging: overview. Ann. NY Acad. Sci. 928:1–21.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, J. F., Hollensworth, S. B., Spitz, D. R., Copeland, W. C., Wilson, G. L., LeDoux, S. P. 2005. Oxidative stress-induced apoptosis in neurons correlates with mitochondrial DNA base excision repair pathway imbalance. Nucleic Acids Res. 22(14):4660–4671.

    Article  CAS  Google Scholar 

  • Hashiguchi, K., Stuart, J. A., de Souza-Pinto, N. C., Bohr, V. A. 2004. The C-terminal alphaO helix of human Ogg1 is essential for 8-oxoguanine DNA glycosylase activity: the mitochondrial beta-Ogg1 lacks this domain and does not have glycosylase activity. Nucleic Acids Res. 32(18):5596–5608.

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa, T., Noda, M., Yasuda, K., Yorifuji, H., Taniguchi, S., Miwa, I., Sakura, H., Terauchi, Y., Hayashi, J., Sharp, G. W., Kanazawa, Y., Akanuma, Y., Yazaki, Y., Kadowaki, T. 1998. Ethidium bromide-induced inhibition of mitochondrial gene transcription suppresses glucose-stimulated insulin release in the mouse pancreatic beta-cell line betaHC9. J. Biol. Chem. 273(32):20300–20307.

    Article  PubMed  CAS  Google Scholar 

  • Hazra, T. K., Izumi, T., Boldogh, I., Imhoff, B., Kow, Y. W., Jaruga, P., Dizdaroglu, M., Mitra, S. 2002. Identification and characterization of a human DNA glycosylase for repair of modified bases in oxidatively damaged DNA. Proc. Natl Acad. Sci. USA 99(6):3523–3528.

    Article  PubMed  CAS  Google Scholar 

  • Hollensworth, B. S., Shen, C., Sim, J. E., Spitz, D. R., Wilson, G. L., LeDoux, S. P. 2000. Glial cell type-specific responses to menadione-induced oxidative stress. Free Radic. Biol. Med. 28:1161–1174.

    Article  PubMed  CAS  Google Scholar 

  • Horton, T. M., Petros, J. A., Heddi, A., Shoffner, J., Kaufman, A. E., Graham, S. D. Jr., Gramlich, T., Wallace, D. C. 1996. Novel mitochondrial DNA deletion found in a renal cell carcinoma. Genes Chromosom. Cancer 15(2):95–101.

    Article  PubMed  CAS  Google Scholar 

  • Hsu. T. C., Young, M. R., Cmarik, J., Colburn, N. H. 2000. Activator protein 1 (AP-1)- and nuclear factor kappaB (NF-kappaB)-dependent transcriptional events in carcinogenesis. Free Radic. Biol. Med. 28:1338–1348.

    Article  PubMed  CAS  Google Scholar 

  • Hu, J., de Souza-Pinto, N. C., Haraguchi, K., Hogue, B. A., Jaruga, P., Greenberg, M. M., Dizdaroglu, M., Bohr, V. A. 2005. Repair of formamidopyrimidines in DNA involves different glycosylases: role of the OGG1, NTH1, and NEIL1 enzymes. J. Biol. Chem. 280(49):40544–40551.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, E. K., Hogue, B. A., Souza-Pinto, N. C. et al. 1998. Age-associated change in mitochondrial DNA damage. Free Radic. Res. 29:573–579.

    Article  PubMed  CAS  Google Scholar 

  • Ihara, Y., Toyokuni, S., Uchida, K., Odaka, H., Tanaka, T., Ikeda, H., Hiai, H., Seino, Y., Yamada, Y. 1999. Hyperglycemia causes oxidative stress in pancreatic beta-cells of GK rats, a model of type 2 diabetes. Diabetes 48(4):927–932.

    Article  PubMed  CAS  Google Scholar 

  • Ikebe, S., Tanaka, M., Ohno, K., Sato, W., Hattori, K., Kondo, T., Mizuno, Y., Ozawa, T. 1990. Increase of deleted mitochondrial DNA in the striatum in Parkinson’s disease and senescence. Biochem. Biophys. Res. Commun. 170(3):1044–1048.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, S., Biswas, T., Roy, R., Izumi, T., Boldogh, I., Kurosky, A., Sarker, A. H., Seki, S., Mitra, S. 1998. Purification and characterization of human NTH1, a homolog of Escherichia coli endonuclease III. Direct identification of Lys-212 as the active nucleophilic residue. J. Biol. Chem. 273(34):21585–21593.

    Article  PubMed  CAS  Google Scholar 

  • Kalifa, L., Beutner, G., Phadnis, N., Sheu, S. S., Sia, E. A. 2009. Evidence for a role of FEN1 in maintaining mitochondrial DNA integrity. DNA Repair (Amst.) 8(10):1242–1249.

    Article  CAS  Google Scholar 

  • Kang, D., Hamasaki, N. 2005. Alterations of mitochondrial DNA in common diseases and disease states: aging, neurodegeneration, heart failure, diabetes and cancer. Curr. Med. Chem. 12:429–441.

    Article  PubMed  CAS  Google Scholar 

  • Karahalil, B., de Souza-Pinto, N. C., Parsons, J. L., Elder, R. H., Bohr, V. A. 2003. Compromised incision of oxidized pyrimidines in liver mitochondria of mice deficient in NTH1 and OGG1 glycosylases. J. Biol. Chem. 278(36):33701–33707.

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu, H., Vinograd, J. 1974. Replication of circular DNA in eukaryotic cells. Annu. Rev. Biochem. 43:695–719.

    Article  PubMed  CAS  Google Scholar 

  • Khaidakov, M., Heflich, R. H., Manjanatha, M. G., Myers, M. B., Aidoo, A. 2003. Accumulation of point mutations in mitochondrial DNA of aging mice. Mutat. Res. 526(1–2):1–7.

    PubMed  CAS  Google Scholar 

  • Khrapko, K., Coller, H. A., André, P. C., Li, X. C., Hanekamp, J. S., Thilly, W. G. 1997. Mitochondrial mutational spectra in human cells and tissues. Proc. Natl Acad. Sci. USA 94(25):13798–13803.

    Article  PubMed  CAS  Google Scholar 

  • Klungland, A., Rosewell, I., Hollenbach, S., Larsen, E., Daly, G., Epe, B., Seeberg, E., Lindahl, T., Barnes, D. E. 1999. Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc. Natl Acad. Sci. USA 96(23):13300–13305.

    Article  PubMed  CAS  Google Scholar 

  • Koczor, C. A., Shokolenko, I. N., Boyd, A. K., Balk, S. P., Wilson, G. L., Ledoux, S. P. 2009. Mitochondrial DNA damage initiates a cell cycle arrest by a Chk2-associated mechanism in mammalian cells. J. Biol. Chem. 284(52):36191–36201.

    Article  PubMed  CAS  Google Scholar 

  • Kraytsberg, Y., Kudryavtseva, E., McKee, A. C., Geula, C., Kowall, N. W., Khrapko, K. 2006. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat. Genet. 38(5):518–520.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan, K. J., Reeve, A. K., Samuels, D. C., et al. 2008. What causes mitochondrial DNA deletions in human cells? Nat. Genet. 40:275–279.

    Article  PubMed  CAS  Google Scholar 

  • Krokan, H. E., Otterlei, M., Nilsen, H., Kavli, B., Skorpen, F., Andersen, S., Skjelbred, C., Akbari, M., Aas, P. A., Slupphaug, G. 2001. Properties and functions of human uracil-DNA glycosylase from the UNG gene. Prog. Nucleic Acid Res. Mol. Biol. 68:365–386.

    Article  PubMed  CAS  Google Scholar 

  • Kujoth, G. C., Hiona, A., Pugh, T. D., Someya, S., Panzer, K., Wohlgemuth, S. E., Hofe, T., Seo, A. Y., Sullivan, R., Jobling, W. A., Morrow, J. D., Van Remmen, H., Sedivy, J. M., Yamasoba, T., Tanokura, M., Weindruch, R., Leeuwenburgh, C., Prolla, T. A. 2005. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309(5733):481–484.

    Article  PubMed  CAS  Google Scholar 

  • Lakshmipathy, U., Campbell, C. 1999a. Double strand break rejoining by mammalian mitochondrial extracts. Nucleic Acids Res. 27(4):1198–1204.

    Article  PubMed  CAS  Google Scholar 

  • Lakshmipathy, U., Campbell, C. 1999b. The human DNA ligase III gene encodes nuclear and mitochondrial proteins. Mol. Cell. Biol. 19:3869–3876.

    PubMed  CAS  Google Scholar 

  • Lakshmipathy, U., Campbell, C. 2000. Mitochondrial DNA ligase III function is independent of Xrcc1. Nucleic Acids Res. 28(20):3880–3886.

    Article  PubMed  CAS  Google Scholar 

  • Lakshmipathy, U., Campbell, C. 2001. Antisense-mediated decrease in DNA ligase III expression results in reduced mitochondrial DNA integrity. Nucleic Acids Res. 29(3):668–676.

    Article  PubMed  CAS  Google Scholar 

  • Larsen, N. B., Rasmussen, M., Rasmussen, L. J. 2005. Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion 5:89–108.

    Article  PubMed  CAS  Google Scholar 

  • LeDoux, S. P., Wilson, G. L., Beecham, E. J., Stevnsner, T., Wassermann, K., Bohr, V. A. 1992. Repair of mitochondrial DNA after various types of DNA damage in Chinese hamster ovary cells. Carcinogenesis 13:1967–1973.

    Article  PubMed  CAS  Google Scholar 

  • LeDoux, S. P., Shen, C., Grishko, V. I., Fields, P. A., Gard, A. L., Wilson, G. L. 1998. Glial cell-specific differences in response to alkylation damage. Glia 24:304–312.

    Article  PubMed  CAS  Google Scholar 

  • LeDoux, S. P., Driggers, W. J., Hollensworth, B. S., Wilson, G. L. 1999. Repair of alkylation and oxidative damage in mitochondrial DNA. Mutat. Res. 434:149–159.

    Article  PubMed  CAS  Google Scholar 

  • Legros, F., Malka, F., Frachon, P., Lombès, A., Rojo, M. 2004. Organization and dynamics of human mitochondrial DNA. J. Cell Sci. 117:2653–2662.

    Article  PubMed  CAS  Google Scholar 

  • Levin, C. J., Zimmerman, S. B A DNA ligase from mitochondria of rat liver. 1976. Biochem. Biophys. Res. Commun. 69(2):514–520.

    Article  PubMed  CAS  Google Scholar 

  • Lim, K. S., Jeyaseelan, K., Whiteman, M., Jenneer, A., Halliwell, B. 2005. Oxidative damage in mitochondrial DNA is not extensive. Ann. NY Acad. Sci. 1042:210–220.

    Article  PubMed  CAS  Google Scholar 

  • Lin, M. T., Simon, D. K., Ahn, C. H., Kim, L. M., Beal, M. F. 2002. High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer’s disease brain. Hum. Mol. Genet. 11(2):133–145.

    Article  PubMed  CAS  Google Scholar 

  • Liu, P., Qian, L., Sung, J. S., de Souza-Pinto, N. C., Zheng, L., Bogenhagen, D. F., Bohr, V. A., Wilson, D. M. 3rd, Shen, B., Demple, B. 2008. Removal of oxidative DNA damage via FEN1-dependent long-patch base excision repair in human cell mitochondria. Mol. Cell. Biol. 28(16):4975–4987.

    Article  PubMed  CAS  Google Scholar 

  • Longley, M. J., Prasad, R., Srivastava, D. K., Wilson, S. H., Copeland, W. C. 1998. Identification of 5′-deoxyribose phosphate lyase activity in human DNA polymerase g and its role in mitochondrial base excision repair. Proc. Natl Acad. Sci. USA 95:12244–12248.

    Article  PubMed  CAS  Google Scholar 

  • Luna, L., Bjørås, M., Hoff, E., Rognes, T., Seeberg, E. 2000. Cell-cycle regulation, intracellular sorting and induced overexpression of the human NTH1 DNA glycosylase involved in removal of formamidopyrimidine residues from DNA. Mutat. Res. 460(2):95–104.

    Article  PubMed  CAS  Google Scholar 

  • Ly, C. V., Verstreken, P. 2006. Mitochondria at the synapse. Neuroscientist 12:291–299.

    Article  PubMed  CAS  Google Scholar 

  • Magaña-Schwencke, N., Henriques, J. A., Chanet, R., Moustacchi, E. 1982. The fate of 8-methoxypsoralen photoinduced crosslinks in nuclear and mitochondrial yeast DNA: comparison of wild-type and repair-deficient strains. Proc. Natl Acad. Sci. USA 79(6):1722–1726.

    Article  PubMed  Google Scholar 

  • Mecocci, P., MacGarvey, U., Kaufman, A. E., Koontz, D., Schoffner, J. M., Wallace, D. C., Beal, M. F. 1993. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann. Neurol. 34:609–616.

    Article  PubMed  CAS  Google Scholar 

  • Michikawa, Y., Mazzucchelli, F., Bresolin, N., Scarlato, G., Attardi, G. 1999. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286(5440):774–779.

    Article  PubMed  CAS  Google Scholar 

  • Murdock, D. G., Christacos, N. C., Wallace, D. C. 2000. The age-related accumulation of a mitochondrial DNA control region mutation in muscle, but not brain, detected by a sensitive PNA-directed PCR clamping based method. Nucleic Acids Res. 28(21):4350–4355.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, R., Turnbull, D. M., Walker, M., Hattersley, A. T. 2008. Clinical features, diagnosis and management of maternally inherited diabetes and deafness (MIDD) associated with the 3243A > G mitochondrial point mutation. Diabet. Med. 25(4):383–399.

    Article  PubMed  CAS  Google Scholar 

  • Myers, K. A., Saffhill, R., O’Connor, P. J. 1988. Repair of alkylated purines in the hepatic DNA of mitochondria and nuclei in the rat. Carcinogenesis 9(2):285–292.

    Article  PubMed  CAS  Google Scholar 

  • Nakabeppu, Y. 2001. Regulation of intracellular localization of human MTH1, OGG1, and MYH proteins for repair of oxidative DNA damage. Prog. Nucleic Acid Res. Mol. Biol. 68:75–94.

    Article  PubMed  CAS  Google Scholar 

  • Nakabeppu, Y., Tsuchimoto, D., Ichinoe, A., Ohno, M., Ide, Y., Hirano, S., Yoshimura, D., Tominaga, Y., Furuichi, M., Sakumi, K. 2004. Biological significance of the defense mechanisms against oxidative damage in nucleic acids caused by reactive oxygen species: from mitochondria to nuclei. Ann. NY Acad. Sci. 1011:101–111.

    Article  PubMed  CAS  Google Scholar 

  • Nilsen, H., Rosewell, I., Robins, P., Skjelbred, C. F., Andersen, S., Slupphaug, G., Daly, G., Krokan, H. E., Lindahl, T., Barnes, D. E. 2000. Uracil-DNA glycosylase (UNG)-deficient mice reveal a primary role of the enzyme during DNA replication. Mol. Cell. 5(6):1059–1065.

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa, T., Edelstein, D., Du, X. L., Yamagishi, S., Matsumura, T., Kaneda, Y., Yorek, M. A., Beebe, D., Oates, P. J., Hammes, H. P., Giardino, I., Brownlee, M. 2000. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404(6779):787–790.

    Article  PubMed  CAS  Google Scholar 

  • Nishioka, K., Ohtsubo, T., Oda, H., Fujiwara, T., Kang, D., Sugimachi, K., Nakabeppu, Y. 1999. Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs. Mol. Biol. Cell. 10(5):1637–1652.

    PubMed  CAS  Google Scholar 

  • Ocampo, M. T., Chaung, W., Marenstein, D. R., Chan, M. K., Altamirano, A., Basu, A. K., Boorstein, R. J., Cunningham, R. P., Teebor, G. W. 2002. Targeted deletion of mNth1 reveals a novel DNA repair enzyme activity. Mol. Cell. Biol. 22(17):6111–6121.

    Article  PubMed  CAS  Google Scholar 

  • Ohtsubo, T., Nishioka, K., Imaiso, Y., Iwai, S., Shimokawa, H., Oda, H., Fujiwara, T., Nakabeppu, Y. 2000. Identification of human MutY homolog (hMYH) as a repair enzyme for 2-hydroxyadenine in DNA and detection of multiple forms of hMYH located in nuclei and mitochondria. Nucleic Acids Res. 28(6):1355–1364.

    Article  PubMed  CAS  Google Scholar 

  • Ojala, D., Montoya, J., Attardi, G. 1981. tRNA punctuation model of RNA processing in human mitochondria. Nature 290:465–470.

    Article  PubMed  Google Scholar 

  • Parker, A., Gu, Y., Lu, A. L. 2000. Purification and characterization of a mammalian homolog of Escherichia coli MutY mismatch repair protein from calf liver mitochondria. Nucleic Acids Res. 28(17):3206–3215.

    Article  PubMed  CAS  Google Scholar 

  • Pelicano, H., Carney, D., Huang, P. 2004. ROS stress in cancer cells and therapeutic implications. Drug Resist. Updat. 7:97–110.

    Article  PubMed  CAS  Google Scholar 

  • Petros, J. A., Baumann, A. K., Ruiz-Pesini, E., et al. 2005. mtDNA mutations increase tumorigenicity in prostate cancer. Proc. Natl Acad. Sci. USA 102:719–724.

    Article  PubMed  CAS  Google Scholar 

  • Pettepher, C. C., LeDoux, S. P., Bohr, V. A., Wilson, G. L. 1991. Repair of alkali-labile sites within the mitochondrial DNA of RINr 38 cells after exposure to the nitrosourea streptozotocin. J. Biol. Chem. 266(5):3113–3117.

    PubMed  CAS  Google Scholar 

  • Pinz, K. G., Bogenhagen, D. F. 1998. Efficient repair of abasic sites in DNA by mitochondrial enzymes. Mol. Cell. Biol. 18:1257.

    PubMed  CAS  Google Scholar 

  • Pinz, K. G., Bogenhagen, D. F. 2000. Characterization of a catalytically slow AP lyase activity in DNA polymerase gamma and other family A DNA polymerases. J. Biol. Chem. 275(17):12509–12514.

    Article  PubMed  CAS  Google Scholar 

  • Polyak, K., Li, Y., Zhu, H., Lengauer, C., Willson, J. K., Markowitz, S. D., Trush, M. A., Kinzler, K. W., Vogelstein, B. 1998. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat. Genet. 20(3):291–293.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, X., Chen Y., Zhou, M. 2001. Two point mutations in mitochondrial DNA of cytochrome c oxidase coexist with normal mtDNA in a patient with Alzheimer’s disease. Brain Res. 893:261–263.

    Article  PubMed  CAS  Google Scholar 

  • Rachek, L. I., Grishko, V. I., Alexeyev, M. F., Pastukh, V. V., LeDoux, S. P., Wilson, G. L. 2004. Endonuclease III and endonuclease VIII conditionally targeted into mitochondria enhance mitochondrial DNA repair and cell survival following oxidative stress. Nucleic Acids Res. 32(10):3240–3247.

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen, A. K., Rasmussen, L. J. 2005. Targeting of O6-MeG DNA methyltransferase (MGMT) to mitochondria protects against alkylation induced cell death. Mitochondrion 5:411–417.

    Article  PubMed  CAS  Google Scholar 

  • Reeve, A. K., Krishnan, K. J., Elson, J. L., Morris, C. M., Bender, A., Lightowlers, R. N., Turnbull, D. M. 2008. Nature of mitochondrial DNA deletions in substantia nigra neurons. Am. J. Hum. Genet. 82(1):228–235.

    Article  PubMed  CAS  Google Scholar 

  • Ribar, B., Izumi, T., Mitra, S. 2004. The major role of human AP-endonuclease homolog Apn2 in repair of abasic sites in Schizosaccharomyces pombe. Nucleic Acids Res. 32(1):115–126.

    Article  PubMed  CAS  Google Scholar 

  • Richter, C., Park, J. W., Ames, B. N. 1988. Normal oxidative damage to the mitochondrial and nuclear DNA is extensive. Proc. Natl Acad. Sci. USA 85:6465–6467.

    Article  PubMed  CAS  Google Scholar 

  • Ro, L. S., Lai, S. L., Chen, C. M., Chen, S. T. 2003. Deleted 4977-bp mitochondrial DNA mutation is associated with sporadic amyotrophic lateral sclerosis: a hospital-based case-control study. Muscle Nerve 28(6):737–743.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, A. B., Klungland, A., Rognes, T., Leiros, I. 2009. DNA repair in mammalian cells: base excision repair: the long and short of it. Cell. Mol. Life Sci. 66(6):981–993.

    Article  PubMed  CAS  Google Scholar 

  • Santos, C., Martínez, M., Lima, M., Hao, Y. J., Simões, N., Montiel, R. 2008. Mitochondrial DNA mutations in cancer: a review. Curr. Top. Med. Chem. 8(15):1351–1366.

    Article  PubMed  CAS  Google Scholar 

  • Sastre, J., Pallardó, F. V., Viña, J. 2003. The role of mitochondrial oxidative stress in aging. Free Radic. Biol. Med. 35(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  • Sawyer, D. E., Van Houten, B. 1999. Repair of DNA damage in mitochondria. Mutat. Res. 434:161–176.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, M. Vissing, J. 2003. New patterns of inheritance in mitochondrial disease. Biochem. Biophys. Res. Commun. 310:247–251.

    Article  PubMed  CAS  Google Scholar 

  • Shaijh, A. Y., Martin, L. J. 2002. DNA base-excision repair enzyme apurinic/apyrimidinic endonuclease/redox factor-1 is increased and competent in the brain and spinal cord of individuals with amyotrophic lateral sclerosis. NeuroMol. Med. 2:47–60.

    Article  Google Scholar 

  • Shidara, Y., Yamagata, K., Kanamori, T., et al. 2005. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res. 65:1655–1663.

    Article  PubMed  CAS  Google Scholar 

  • Shimura-Miura, H., Hattori, N., Kang, D., Miyako, K., Nakabeppu, Y., Mizuno, Y. 1999. Increased 8-oxo-dGTPase in the mitochondria of substantia nigral neurons in Parkinson’s disease. Ann. Neurol. 46:920–924.

    Article  PubMed  CAS  Google Scholar 

  • Shokolenko, I. N., Alexeyev, M. F., Robertson, F. M., LeDoux, S. P., Wilson, G. L. 2003. The expression of Exonuclease III from E. coli in mitochondria of breast cancer cells diminishes mitochondrial DNA repair capacity and cell survival after oxidative stress. DNA Repair (Amst.) 2:471–482

    Article  CAS  Google Scholar 

  • Shokolenko, I. N., Alexeyev, M. F., LeDoux, S. P., Wilson, G. L. 2005. TAT-mediated protein transduction and targeted delivery of fusion proteins into mitochondria of breast cancer cells. DNA Repair (Amst.) 4:511–518.

    Article  CAS  Google Scholar 

  • Sieber, O. M., Lipton, L., Crabtree, M., Heinimann, K., Fidalgo, P., Phillips, R. K., Bisgaard, M. L., Orntoft, T. F., Aaltonen, L. A., Hodgson, S. V., Thomas, H. J., Tomlinson, I. P. 2003. Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. New Engl. J. Med. 348(9):791–799.

    Article  PubMed  Google Scholar 

  • Simon, D. K., Lin, M. T., Ahn, C. H., Liu, G. J., Gibson, G. E., Beal, M. F., Johns, D. R. 2001. Low mutational burden of individual acquired mitochondrial DNA mutations in brain. Genomics 73(1):113–116.

    Article  PubMed  CAS  Google Scholar 

  • Simon, D. K., Lin, M. T., Zheng, L., Liu, G. J., Ahn, C. H., Kim, L. M., Mauck, W. M., Twu, F., Beal, M. F., Johns, D. R. 2004. Somatic mitochondrial DNA mutations in cortex and substantia nigra in aging and Parkinson’s disease. Neurobiol. Aging 25(1):71–81.

    Article  PubMed  CAS  Google Scholar 

  • Singer, T. P., Ramsay, R. R. 1990. Mechanism of the neurotoxicity of MPTP. An update. FEBS Lett. 274:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Singh, K. 2006. Mitochondria damage checkpoint, aging, and cancer. Ann. NY Acad. Sci. 1067:182–190.

    Article  PubMed  CAS  Google Scholar 

  • Smigrodzki, R., Parks, J., Parker, W. D. 2004. High frequency of mitochondrial complex I mutations in Parkinson’s disease and aging. Neurobiol. Aging 25(10):1273–1281.

    Article  PubMed  CAS  Google Scholar 

  • Stevnser, T., Thorslund, T., de Souza-Pinto, N. C., Bohr. V. A. 2002. Mitochondrial repair of 8-oxoguanine and changes with aging. Exp. Gerontol. 37:1189–1196.

    Article  Google Scholar 

  • Stuart, J. A., Mayard, S., Hashiguchi, K., Souza-Pinto, N. C., Bohr, V. A. 2005. Localization of mitochondrial DNA base excision repair to an inner membrane-associated particulate fraction. Nucleic Acids Res. 33(12):3722–3732.

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow, R. H., Parks, J. K., Miller, S. W., Tuttle, J. B., Trimmer, P. A., Sheehan, J. P., Bennett, J. P. Jr., Davis, R. E., Parker, W. D. Jr. 1996. Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann. Neurol. 40(4):663–671.

    Article  PubMed  CAS  Google Scholar 

  • Szczesny, B., Bhakat, K. K., Mitra, S., Boldogh, I. 2004. Age-dependent modulation of DNA repair enzymes by covalent modification and subcellular distribution. Mech. Ageing Dev. 125:755–765.

    Article  PubMed  CAS  Google Scholar 

  • Szczesny, B., Tann, A. W., Longley, M. J., Copeland, W. C., Mitra, S. 2008. Long patch base excision repair in mammalian mitochondrial genomes. J Biol. Chem. 283(39):26349–25356.

    Article  PubMed  CAS  Google Scholar 

  • Szibor, M., Holtz, J. 2003. Mitochondrial ageing. Basic Res. Cardiol. 98(4):210–218.

    PubMed  CAS  Google Scholar 

  • Taanman, J. W. 1999. The mitochondrial genome: structure, transcription, translation and replication. Biochim. Biophys. Acta. 1410:103–123.

    Article  PubMed  CAS  Google Scholar 

  • Takao, M., Aburatani, H., Kobayashi, K., Yasui, A. 1998. Mitochondrial targeting of human DNA glycosylases for repair of oxidative DNA damage. Nucleic Acids Res. 26(12):2917–2922.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, R. W., Barron, M. J., Borthwick, G. M., Gospel, A., Chinnery, P. F., Samuels, D. C., Taylor, G. A., Plusa, S. M., Needham, S. J., Greaves, L. C., Kirkwood, T. B., Turnbull, D. M. 2003. Mitochondrial DNA mutations in human colonic crypt stem cells. J. Clin. Invest. 112(9):1351–1360.

    PubMed  CAS  Google Scholar 

  • Tell, G., Crivellato, E., Pines, A., Paron, I., Pucillo, C., Manzini, G., Bandiera, A., Kelley, M. R., Di Loreto, C., Damante, G. 2001. Mitochondrial localization of APE/Ref-1 in thyroid cells. Mutat. Res. 485(2):143–52.

    Article  PubMed  CAS  Google Scholar 

  • Tell, G., Damante, G., Caldwell, D., Kelley, M. R. 2005. The intracellular localization of APE1/Ref-1: more than a passive phenomenon? Antioxid. Redox Signal. 7(3–4):367–384.

    Article  PubMed  CAS  Google Scholar 

  • Tomkinson, A. E., Bonk, R. T., Linn, S. 1988. Mitochondrial endonuclease activities specific for apurinic/apyrimidinic sites in DNA from mouse cells. J. Biol. Chem. 263(25):12532–12537.

    PubMed  CAS  Google Scholar 

  • Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J. N., Rovio, A. T., Bruder, C. E., Bohlooly, Y. M., Gidlöf, S., Oldfors, A., Wibom, R., Törnell, J., Jacobs, H. T., Larsson, N. G. 2004. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429(6990):417–423.

    Article  PubMed  CAS  Google Scholar 

  • Tsuchimoto, D., Sakai, Y., Sakumi, K., Nishioka, K., Sasaki, M., Fujiwara, T., Nakabeppu, Y. 2001. Human APE2 protein is mostly localized in the nuclei and to some extent in the mitochondria, while nuclear APE2 is partly associated with proliferating cell nuclear antigen. Nucleic Acids Res. 29(11):2349–2360.

    Article  PubMed  CAS  Google Scholar 

  • Turrens, J. F. 1997. Superoxide production by the mitochondrial respiratory chain. Biosci. Rep. 17:3–8.

    Article  PubMed  CAS  Google Scholar 

  • Van Goethem, G., Dermaut, B., Löfgren, A., Martin, J. J., Van Broeckhoven, C. 2001. Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat. Genet. 28(3):211–212.

    Article  PubMed  CAS  Google Scholar 

  • Van Remmen, H., Ikeno, Y., Hamilton, M., Pahlavani, M., Wolf, N., et al. 2003. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol. Genomics 16:29–37.

    Article  PubMed  CAS  Google Scholar 

  • Vives-Bauza, C., Andreu, A. L., Manfredi, G., Beal, M. F., Janetzky, B., Gruenewald, T. H., Lin, M. T. 2002. Sequence analysis of the entire mitochondrial genome in Parkinson’s disease. Biochem. Biophys. Res. Commun. 290(5):1593–1601.

    Article  PubMed  CAS  Google Scholar 

  • Wadia, J. S., Dowdy, S. F. 2005. Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer. Adv. Drug Deliv. Rev. 57(4):579–596.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G., Hazra, T. K, Mitra, S., Lee, H. M, Englander, E. W. 2000. Mitochondrial DNA damage and a hypoxic response are induced by CoCl(2) in rat neuronal PC12 cells. Nucleic Acids Res. 28(10):2135–2140.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Xiong, S., Xie, C., Markesbery, W. R., Lovell, M. A. 2005. Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer’s disease. J. Neurochem. 93:953–962.

    Article  PubMed  CAS  Google Scholar 

  • Wei, Y. H., Lee, H. C. 2002. Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp. Biol. Med. 227:671–682.

    CAS  Google Scholar 

  • Yakes, M. F. and Van Houten, B. 1997. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl Acad. Sci. USA 94:514–519.

    Article  PubMed  CAS  Google Scholar 

  • Yang, M. Y., Bowmaker, M., Reyes, A., Vergani, L., Angeli, P., Gringeri, E., Jacobs, H. T., Holt, I. J., 2002. Biased incorporation of ribonucleotides on the mitochondrial L-strand accounts for apparent strand-asymetric DNA replication. Cell 111:495–505.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, W., Qin, W., Bradley, P., Wessel, A., Puckett, C. L., Sauter, E. R. 2005. Mitochondrial DNA mutations in breast cancer tissue and in matched nipple aspirate fluid. Carcinogenesis 26(1):145–152.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadiya M. Druzhyna .

Editor information

Editors and Affiliations

Glossary

Base excision repair (BER):

Is a cellular mechanism that repairs damaged DNA. It is primarily responsible for removing small, non-helix distorting base lesions from genome. BER is important for removing damaged bases that could otherwise cause mutations by mispairing or lead to breaks in DNA during replication.

Mitochondrial DNA:

Mitochondria have a small genome that, in mammals generally takes the form of covalently closed circles approximately 16 kb in circumference. The mitochondrial genome encodes 13 proteins that are essential for oxidative phosphorylation, 22 tRNAs, and 2 rRNAs.

Mutations:

Are permanent changes in the DNA sequence of a cell’s genome. Mutations in a gene’s DNA sequence either have no effect, alter the amino acid sequence of the protein encoded by the gene, or prevent the gene from functioning.

Reactive oxygen species (ROS):

Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include singlet oxygen; superoxides; peroxides; hydroxyl radical; and hypochlorous acid. They contribute to the microbicidal activity of phagocytes, regulation of signal transduction and gene expression, and the oxidative damage to nucleic acids, proteins, and lipids.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Druzhyna, N.M., Wilson, G.L., LeDoux, S.P. (2011). Human Mitochondrial Mutations and Repair. In: Kempken, F. (eds) Plant Mitochondria. Advances in Plant Biology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89781-3_19

Download citation

Publish with us

Policies and ethics