Skip to main content

Practical Use of Hydrogels in Stereolithography for Tissue Engineering Applications

  • Chapter
  • First Online:
Stereolithography

Abstract

In recent years, additive manufacturing (AM) or rapid prototyping (RP) technologies, initially developed to create prototypes prior to production for the automotive, aerospace, and other industries, have found applications in tissue engineering (TE) and their use is growing rapidly. RP technologies are increasingly demonstrating the potential for fabricating biocompatible 3D structures with precise control of the micro- and macro-scale characteristics. Several comprehensive reviews on the use of RP technologies, also known as solid freeform fabrication, Additive Manufacturing, direct digital manufacturing, and other names, have been published recently [1–4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leong, K.F., C.M. Cheah, and C.K. Chua. Solid freeform fabrication of three-dimensional scaffolds for engineering replacements tissues and organs. Biomaterials 24: 2363-2378, 2003.

    Article  Google Scholar 

  2. Liu, V. and S.N. Bhatia. Three-dimensional tissue fabrication. Advanced Drug Delivery Reviews 56: 1635–1647, 2004.

    Article  Google Scholar 

  3. Hutmacher, D.W. and M.A. Woodruff. Design, Fabrication, and Characterization of Scaffolds via Solid Free-Form Fabrication Techniques. In: Biomaterials Fabrication and Processing Handbook, edited by P.K. Chu and X. Liu. Boca Raton, FL: CRC Press, Taylor & Francis Group, 2008, pp. 45–67.

    Google Scholar 

  4. Vozzi, G. and A. Ahluwalia. Rapid Prototyping Methods for Tissue Engineering Applications. In: Biomaterials Fabrication and Processing Handbook, edited by P.K. Chu and X. Liu. Boca Raton, FL: CRC Press, Taylor & Francis Group, 2008, pp. 95–114

    Chapter  Google Scholar 

  5. Ang, T.H., F.S.A. Sultana, D.W. Hutmacher, Y.S. Wong, J.Y.H. Fuh, X.M. Mo, H.T. Loh, and S.H. Teoh. Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system. Materials Science and Engineering C 20: 35–42, 2002.

    Article  Google Scholar 

  6. Landers, R., U. Hubner, R. Schmelzeisen and R. Mulhaupt. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23: 4437–4447, 2002

    Article  Google Scholar 

  7. Vozzi, G., C. Flaim, A. Ahluwalia, and S. Bhatia. Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24: 2533–2540, 2003.

    Article  Google Scholar 

  8. Vozzi, G., V. Chiono, G. Ciardelli, P. Giusti, A. Previti, C. Cristallini, N. Barbani, G. Tantussi, and A. Ahluwalia. Microfabrication of biodegradable polymeric structures for guided tissue engineering. Materials Research Society Symposium Proceedings, EXS-1: F5.22.1–3, 2004.

    Google Scholar 

  9. Wiria, F.E., K.F. Leong, and Y. Liu. Poly-ε-caprolactone/hydroxiapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomaterialia 3: 1–12, 2007.

    Article  Google Scholar 

  10. Tan, K.H., C.K. Chua, K.F. Leong, C.M. Cheah, P. Cheang, M.S. Abu Bakar, and S.W. Cha. Scaffold development using selective laser sintering of polyetherketone-hydroxyapatite biocomposite blends. Biomaterials 24: 3115–3123, 2003.

    Article  Google Scholar 

  11. Hutmacher, D.W., T. Schantz, I. Zein, K.W. Ng, S.H. Teoh, and K.C. Tan. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. Journal of Biomedical Materials Research 55(2): 203–216, 2001.

    Article  Google Scholar 

  12. Zein, I., D.W. Hutmacher, K.C. Tan, and S.H. Teoh. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23: 1169–1185, 2002.

    Article  Google Scholar 

  13. Chim, H., D.W. Hutmacher, A.M. Chou, A.L. Oliveira, R.L. Reis, T.C. Lim, and J.T. Schantz. A comparative analysis of scaffold material modifications for load-bearing applications in tissue engineering. International Journal of Oral and Maxillofacial Surgery 35: 928–934, 2006.

    Article  Google Scholar 

  14. Liu, V.A. and S.N. Bhatia. Three-dimensional photopatterning of hydrogels containing living cells. Biomedical Microdevices 4: 257–266, 2002.

    Article  Google Scholar 

  15. Hahn, M.S., Miller, J.S., and J.L. West. Laser scanning lithography for surface micropatterning on hydrogels. Advanced Materials 17: 2939–2942, 2005.

    Article  Google Scholar 

  16. Hahn, M.S. L.J. Taite, J.J. Moon, M.C. Rowland, K.A. Ruffino, and J.L. West. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27: 2519–2534, 2006.

    Article  Google Scholar 

  17. Hahn, M.S., Miller J.S., and J.L. West. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Advanced Materials 18: 2679–2684, 2006.

    Article  Google Scholar 

  18. Luo, N., A.T. Metters, B. Hutchison, C.N. Bowman, and K.S. Anseth. A methacrylated photoiniferter as a chemical basis for microlithography: micropatterning based on photografting polymerization. Macromolecules 36: 6739–6745, 2003.

    Article  Google Scholar 

  19. Starly, B., R. Chang, and W. Sun. UV-Photolithography fabrication of poly-ethylene glycol hydrogels encapsulated with hepatocytes. Proceedings of the 17th Annual Solid Freeform Fabrication Symposium, University of Texas at Austin, August 1–3, 2006, pp 102–110.

    Google Scholar 

  20. Han, L.H., G. Mapili, S. Chen, and K. Roy. Freeform fabrication of biological scaffolds by projection photopolymerization. Proceedings of the 18th Annual Solid Freeform Fabrication Symposium, University of Texas at Austin, August 1–3, 2007, pp 450–457.

    Google Scholar 

  21. Han, L.H., G. Mapili, S. Chen, and K. Roy. Projection Microfabrication of three-dimensional scaffolds for tissue engineering. Transactions of ASME: Journal of Manufacturing Science and Engineering 130: 021005-1–021005-4, 2008.

    Google Scholar 

  22. Choi, J.W., R.B. Wicker, S.H. Cho, C.S. Ha, S.H. Lee. Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography. Rapid Prototyping Journal 15(1): 59–70, 2009.

    Article  Google Scholar 

  23. Choi, J.W., R.B. Wicker, S.H. Lee, K.H.Choi, C.S. Ha, and I. Chung. Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. Journal of Materials Processing Technology, 209(15–16): 5494–5503, 2009.

    Google Scholar 

  24. Comeau, B.M., Umar, Y., Gonsalves, K.E., and Henderson, C.L. New materials and methods for hierarchically structured tissue scaffolds. Materials Research Society Symposium Proceedings, 845(A): AA4.4.1–6, 2005.

    Google Scholar 

  25. Bens, A.T., C. Tille, B. Leukers, G. Bermes, E. Emons, R. Sobe, A. Pansky, B. Roitzheim, M. Schulze, E. Tobiasch, and H. Seitz. Mechanical properties and bioanalytical characterization for a novel non-toxic flexible photopolymer formulation class. Proceedings of the 16th Annual Solid Freeform Fabrication Symposium, University of Texas at Austin, August 1–3, 2005, pp 162–173.

    Google Scholar 

  26. Cooke, M.N., J.P. Fisher, D. Dean, Rimnac, C. and A.G. Mikos. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone in growth. Materials Research Part B: Applied Biomaterials 64B: 65–69, 2002.

    Article  Google Scholar 

  27. Lee, K.W., S. Wang, B.C. Fox, E.L. Ritman, M.J. Yaszemski, and L. Lu. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromolecules 8: 1077–1084, 2007.

    Article  Google Scholar 

  28. Popov, V.K., A.V. Evseev, A.L. Ivanov, V.V. Roginski, A.I. Volozhin, and S.M. Howdle. Laser stereolithography and super critical fluid processing for custom-designed implant fabrication. Journal of Materials Science: Materials in Medicine 15: 123–128, 2004.

    Article  Google Scholar 

  29. Barry, J.J.A., A.V. Evseev, M.A. Markov, C.E. Upton, C.A. Scotchford, V.K. Popov, and S.M. Howdle. In vitro study of hydroxyapatite-based photocurable polymer composites prepared by laser stereolithography and supercritical fluid extraction. Acta Biomaterialia 4(6): 1603–1610, 2008.

    Google Scholar 

  30. Dhariwala, B., Hunt, E., and Boland, T. Rapid prototyping of tissue engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Engineering 9(10): 1316–1322, 2004.

    Google Scholar 

  31. Arcaute, K., L. Ochoa, F. Medina, C. Elkins, B. Mann, and Wicker, R. Three-dimensional PEG hydrogel construct fabrication using stereolithography. Materials Research Society Symposium Proceedings, 874:L5.5.1–L5.5.7, 2005.

    Google Scholar 

  32. Arcaute, K., L. Ochoa, B. Mann, and R. Wicker. Hydrogels in stereolithography. Proceedings of the 16th Annual Solid Freeform Fabrication Symposium, University of Texas at Austin, August 1–3, 2005.

    Google Scholar 

  33. Arcaute, K., L. Ochoa, B.K. Mann, and Wicker, R.B. Stereolithography of PEG hydrogel multi-lumen nerve regeneration conduits. ASME IMECE2005-81436 American Society of Mechanical Engineers International Mechanical Engineering Congress and Exposition, November 5–11, Orlando, Florida, 2005.

    Google Scholar 

  34. Wohlers, T., “Wohlers Report 2004: Rapid Prototyping, Tooling and Manufacturing, State of the Industry,” Wohlers Associates, Annual Worldwide Progress Report, 2004.

    Google Scholar 

  35. Sandoval, J.H., L. Ochoa, A. Hernandez, K.F. Soto, L.E. Murr, R.B. Wicker. Nanotailoring stereolithography resins for unique applications using carbon nanotubes. Proceedings of the 16th Annual Solid Freeform Fabrication Symposium, University of Texas at Austin, August 1–3, 2005.

    Google Scholar 

  36. Inamdar, A., M. Magana, F. Medina, Y. Grajeda, and R. Wicker. Development of an automated multiple material stereolithography machine. Proceedings of the 17th Annual Solid Freeform Fabrication Symposium, University of Texas at Austin, August 14–16, 2006.

    Google Scholar 

  37. Jacobs, P.F., Fundamental processes. In: Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography, edited by P.F. Jacobs and D.T. Reid. Dearborn, Michigan: Society of Manufacturing Engineers, 1992, pp. 79–110.

    Google Scholar 

  38. Lee, I.H. and D.W. Cho. Micro-stereolithography photopolymer solidification patterns for various laser beam exposure conditions. International Journal of Advanced Manufacturing Technology 22: 410–416, 2003.

    Article  Google Scholar 

  39. Lee, J.H., R.K. Prud’homme, and I.A. Aksay. Cure depth in photopolymerization: experiments and theory. Journal of Material Research 16(2): 3536–3544, 2001.

    Article  Google Scholar 

  40. Jacobs, P.F. “Diagnostic testing.” In: Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography, edited by P.F. Jacobs and D.T. Reid. Dearborn, Michigan: Society of Manufacturing Engineers, 1992, pp. 249–285.

    Google Scholar 

  41. D Systems. SLA-190/250 WindowpaneTM Building Procedure. In: 3D Systems AccumaxTM Toolkite User Guide. Valencia, California: 3D Systems, 1993.

    Google Scholar 

  42. DSM Somos®. Method 2: Determination of depth of penetration of photopolymer by a laser beam scan. DSM Somos® Revision 1, pp 1–4.

    Google Scholar 

  43. Bryant, S.J. and K.S. Anseth. The effect of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels. Biomaterials 22: 619–626, 2001.

    Article  Google Scholar 

  44. Bryant, S.J., K.S. Anseth, D.A. Lee, and D.L. Bader. Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. Journal of Orthopaedic Research 22: 1143–1149, 2004.

    Article  Google Scholar 

  45. Burdick, J.A. and K.S. Anseth. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23: 4315–4323, 2002.

    Article  Google Scholar 

  46. Williams, C.G., T.K. Kim, A. Taboas, A. Malik, P. Manson, and J. Elisseeff. In vitro chondrogenesis of bone marrow derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Engineering 9(4):679–688, 2003.

    Article  Google Scholar 

  47. Gunn, J.W., S.D. Turner, and B.K. Mann. Adhesive and mechanical properties of hydrogels influence neurite extension. Journal of Biomedical Materials Research, 72A (1):91–97, 2005.

    Article  Google Scholar 

  48. Mann, B.K., A.S. Gobin, A.T. Tsai, R.H. Schmedlen, and J.L. West. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22: 3045–3051, 2001.

    Article  Google Scholar 

  49. Mann, B.K., R.H. Schmedlen, and J.L. West. Tethered-TGF-β increases extracellular matrix production of vascular smooth muscle cells in peptide-modified scaffolds. Biomaterials, 22:439–44, 2001.

    Article  Google Scholar 

  50. Mann, B.K. and J.L. West. Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds. Journal of Biomedical Materials Research, 60:86–93, 2002.

    Article  Google Scholar 

  51. Sawhney, A.S., C.P. Pathak, and J.A. Hubbell. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(alpha-hydroxy acid) diacrylate macromers. Macromolecules 26:581–587, 1993.

    Article  Google Scholar 

  52. Zalispky, S. and J.M. Harris. “Introduction to chemistry and biological applications of poly(ethylene glycol),” Chapter 1. In: Poly(ethylene glycol) Chemistry and Biological Applications, edited by S. Zalispky and J.M. Harris. Washington, DC: American Chemical Society Series 680, 1997, pp. 1–13.

    Google Scholar 

  53. Nguyen, K.T. and J.L. West. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23: 4307-4314, 2002.

    Article  Google Scholar 

  54. Arcaute, K., B.K. Mann, and R.B. Wicker. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Annals of Biomedical Engineering 34(9): 1429–1441, 2006.

    Article  Google Scholar 

  55. Fisher, J.P., J.W. Vehof, D. Dean, J.P. Van der Waerden, T.A. Holland, A.G. Mikos, and J.A. Jansen. Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. Journal of Biomedical Materials Research 59(3): 547–556, 2002.

    Article  Google Scholar 

  56. Leach, J.B., K.A. Bivens, C.W. Patrick, and C.E. Schmidt. Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnology and Bioengineering 82(5): 578–589, 2003.

    Article  Google Scholar 

  57. Burdick, J.A., C. Chung, X. Jia, M.A. Randolph and R. Langer. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6: 386–391, 2005.

    Article  Google Scholar 

  58. Masters, K.S., D.N. Shah, L.A. Leinwand, and K.S. Anseth. Crosslinked hyaluronan scaffolds as biologically active carriers for valvular interstitial cells. Biomaterials 26: 2517–2525, 2005.

    Article  Google Scholar 

  59. Bryant, S.J., C.R. Nuttelman, and K.S. Anseth. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. Journal of Biomaterials Science, Polymer Edition, 11(5): 439–457, 2000.

    Article  Google Scholar 

  60. Williams, C.G., A.N. Malik, T.K. Kim, P.N. Manson, and J.H Elisseeff. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials, 26: 1211–1218, 2005.

    Article  Google Scholar 

  61. Ciba Specialty Chemicals, Coatings Effects Segment. Ciba® Irgacure® 2959 Technical Data Sheet. Edition 2 4 98. Ciba Specialty Chemicals.

    Google Scholar 

  62. McCurdy, K.G. and K.J. Laidler. Rates of polymerization of acrylates and methacrylates in emulsion systems. Canadian Journal of Chemistry 42: 825–829, 1964.

    Article  Google Scholar 

  63. Klumperman, B. Pecularities in Atom Transfer Radical Copolimerization. Available online at http://academic.sun.ac.za/UNESCO/PolymerED2002/Contributions/Klumperman.pdf. Accessed on 05/2008.

  64. Jacobs, P.F. “Introduction to part building.” In: Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography, edited by P.F. Jacobs and D.T. Reid. Dearborn, Michigan: Society of Manufacturing Engineers, 1992, pp. 171–194.

    Google Scholar 

  65. Gayet, J.C., and G. Fortier. “New bioatificial hydrogels: characterization and physical properties.” In: Hydrogels and Biodegradable Polymers for Bioapplications, edited by R.M. Ottenbrite, S.J. Huang, and K. Park. Washington, D.C. American Chemical Society, 1996, pp. 17–24.

    Google Scholar 

  66. Jiankang, H, L. Dichen, L. Yaxiong, Y. Bo, L. Bingheng, and L. Qin. Fabrication and characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures. Polymer, 48: 4578–4588, 2007.

    Article  Google Scholar 

  67. Arcaute, K., N. Zuverza, B.K. Mann, and R.B. Wicker. Multi-material stereolithography: spatially-controlled bioactive poly(ethylene glycol) scaffolds for tissue engineering. Proceedings of the 2007 Solid Freeform Fabrication Symposium, University of Texas at Austin, August 6-8, 2007.

    Google Scholar 

  68. Arcaute, K. Stereolithography of Poly(Ethylene Glycol) Hydrogels with Application in Tissue Engineering as Peripheral Nerve Regeneration Scaffolds. Ph.D. Dissertation. The University of Texas at El Paso. December, 2008.

    Google Scholar 

  69. Arcaute, K, B.K. Mann, and R.B. Wicker. Stereolithography of spatially-controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomaterialia, 6: 1047–1054, 2010.

    Article  Google Scholar 

Download references

Acknowledgments

The research presented here was performed at the University of Texas at El Paso (UTEP) within the W.M. Keck Center for 3D Innovation (Keck Center). Primary support for this research was provided by the National Science Foundation through Grant No. CBET-0730750. The authors are grateful to the many faculty, staff, and students within the Keck Center who assisted in various ways with this research. Equipment and facilities in the UTEP Analytical Cytology Core Facility of the Biological Sciences Department used here are maintained through NCRR Grant Number 5G12 RR008124. Any opinions, findings, and conclusions or recommendations expressed in this work are those of the authors and do not necessarily reflect the views of the National Science Foundation or any other individual or funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan B. Wicker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Arcaute, K., Mann, B.K., Wicker, R.B. (2011). Practical Use of Hydrogels in Stereolithography for Tissue Engineering Applications. In: Bártolo, P. (eds) Stereolithography. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-92904-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-92904-0_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-92903-3

  • Online ISBN: 978-0-387-92904-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics