Skip to main content

Carrier Motility

  • Chapter
Trafficking Inside Cells

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Membrane traffic pathways require the transport of material between successive organelles, which in neurons may be more than one meter apart. This traffic involves a varied mix of microtubule- and actin-based motility, driven by dynein, kinesin family members and myosins. In this chapter, we will describe the morphology and movement of me membrane carriers that transport material between organelles and the machinery that drives their motility, concentrating on molecular motor proteins in vertebrate non-neuronal cells. We will also consider the role played by Rab proteins as integrators of trafficking and motility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Soldati T, Schliwa M. Powering membrane traffic in endocytosis and recycling. Nat Rev Mol Cell Biol 2006; 7:897–908.

    Article  CAS  PubMed  Google Scholar 

  2. Wozniak M, Milner R, Allan V. N-terminal kinesins: Many and various. Traffic 2004; 5:400–10.

    Article  CAS  PubMed  Google Scholar 

  3. Caviston J, Holzbaur E. Microtubule motors at the intesection of trafficking and transport. Trends Cell Biol 2006; 16:530–7.

    Article  CAS  PubMed  Google Scholar 

  4. Vallee R, Williams J, Varma D et al. Dynein: And ancient motor protein involved in multiple modes of transport. J Neurobiol 2003; 58:189–200.

    Article  CAS  Google Scholar 

  5. Liang Y, Yu W, Li Y et al. Nudel functions in membrane traffic mainly through association with Lisl and cytoplasmic dynein. J Cell Biol 2004; 164:557–66.

    Article  CAS  PubMed  Google Scholar 

  6. Sasaki S, Shionoya A, Ishida M et al. A LISl/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 2000; 28:681–96.

    Article  CAS  PubMed  Google Scholar 

  7. Tai CY, Dujardin D, Faulkner N et al. Role of dynein, dynactin and CLIP-170 interactions in LIS1 kinetochore function. J Cell Biol 2002; 156:959–68.

    Article  CAS  PubMed  Google Scholar 

  8. Schroer T. Dynactin. Ann Rev Cell Dev Biol 2004; 20:759–79.

    Article  CAS  Google Scholar 

  9. Holleran E, Ligon L, Tokito M et al. Beta III spectrin binds to the Arpl subunit of dynactin. J Biol Chem 2001; 276:36598–605.

    Article  CAS  PubMed  Google Scholar 

  10. Muresan V, Stankewich M, Steffen W et al. Dynactin-dependent, dynein-driven vesicle transport in the absence of membrane proteins: A role for spectrin and acidic phospholipids. Mol Cell 2001; 7:173–83.

    Article  CAS  PubMed  Google Scholar 

  11. Papoulas O, Hays T, Sisson J. The golgin Lava lamp mediates dynein-based Golgi movements during Drosophila cellularization. Nat Cell Biol 2005; 7:612–8.

    Article  CAS  PubMed  Google Scholar 

  12. Varma D, Dujardin D, Stehman S et al. Role of the kinetochore/cell cycle checkpoint protein ZW10 in interphase cytoplasmic dynein function. J Cell Biol 2006; 172:655–62.

    Article  CAS  PubMed  Google Scholar 

  13. Starr D, Williams B, Hays T et al. ZW10 helps recruit dynactin and dynein to the kinetochore. J Cell Biol 1998; 142:763–74.

    Article  CAS  PubMed  Google Scholar 

  14. Haghnia M, Cavalli V, Shah S et al. Dynactin is required for coordinated bidirectional motility, but not for dynein membrane attachment. Mol Biol Cell 2007; 18:2081–9.

    Article  CAS  PubMed  Google Scholar 

  15. Bielli A, Thornqvist PO, Hendrick A et al. The small GTPase Rab4A interacts with the central region of cytoplasmic dynein light intermediate chain-1. Biochem Biophys Res Comm 2001; 281:1141–53.

    Article  CAS  PubMed  Google Scholar 

  16. Tai A, Chuang JZ, Bode C et al. Rhodopsin’s carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell 1999; 97:877–87.

    Article  CAS  PubMed  Google Scholar 

  17. Yano H, Lee F, Kong H et al. Association of Trk neurotrophin receptors with components of the cytoplasmic dynein motor. J Neurosci 2001; 21:RC125, 121–7.

    CAS  PubMed  Google Scholar 

  18. King S, Schroer T. Dynactin increases the processivity of the cytoplasmic dynein motor. Nature Cell Biol 1999; 2:20–4.

    Google Scholar 

  19. Culver-Hanlon T, Lex S, Stephens A et al. A microtubule-binding domain in dynactin increases dynein processivity by skating along microtubules. Nat Cell Biol2006; 8:264–70.

    Article  CAS  PubMed  Google Scholar 

  20. Kim H, Ling SC, Rogers G et al. Microtubule binding by dynactin is required for microtubule organization but not cargo transport. J Cell Biol 2007; 176:641–51.

    Article  CAS  PubMed  Google Scholar 

  21. Malik R, Petrov D, Lex S et al. Building complexity: An in vitro study of cytoplasmic dynein with in vivo implications. Curr Biol 2005; 15:2075–85.

    Article  CAS  Google Scholar 

  22. Vaughan P, Miura P, Henderson M et al. A role for regulated binding of pl50Glued to microtubuleplus ends in organelle transport. J Cell Biol 2002; 158:305–19.

    Article  CAS  PubMed  Google Scholar 

  23. Watson P, Forster R, Palmer K et al. Coupling of ER exit to microtubules through direct interac-tion of COPII with dynactin. Nat Cell Biol 2005; 7:48–55.

    Article  CAS  PubMed  Google Scholar 

  24. Lenz J, Schuchardt I, Straube A et al. A dynein loading zone for retrograde endosome motility at microtubule plus ends. EMBO J 2006; 25:2275–86.

    Article  CAS  PubMed  Google Scholar 

  25. Watson P, Stephens D. Microtubule plus-end loading of pl50Glued is mediated by EB1 and CLIP-170 but is not required for intracellular membrane traffic in mammalian cells. J Cell Sci 2006; 119:2758–67.

    Article  CAS  PubMed  Google Scholar 

  26. Wickstead B, Gull K. A ‘holistic’ kinesin phylogeny reveals new kinesin families and predicts protein functions. Mol Biol Cell 2006; 17:1734–43.

    Article  CAS  PubMed  Google Scholar 

  27. McCart A, Mahony D, Rothnagel J. Alternatively spliced products of the human kinesin light chain 1 (KNS2) gene. Traffic 2003; 4:576–80.

    CAS  PubMed  Google Scholar 

  28. Gyoeva F, Bybikova E, Minin A. An isoform of kinesin light chain specific for the Golgi complex. J Cell Sci 2000; 113:2047–54.

    CAS  PubMed  Google Scholar 

  29. Khodjakov A, Lizunova EM, Minin AA et al. A specific light chain of kinesin associates with mitochondria in cultured cells. Mol Biol Cell 1998; 9:333–43.

    CAS  PubMed  Google Scholar 

  30. Wozniak M, Allan V. Cargo selection by specific kinesin light chain 1 isoforms. EMBO J 2006; 25:5457–68.

    Article  CAS  PubMed  Google Scholar 

  31. Blasius T, Cai D, Jih G et al. Two binding partners cooperate to activate the molecular motor kinesin-1. J Cell Biol 2007; 176:11–7.

    Article  CAS  PubMed  Google Scholar 

  32. Cai D, Hoppe A, Swanson J et al. Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells. J Cell Biol 2007; 176:51–63.

    Article  CAS  PubMed  Google Scholar 

  33. Coy DL, Hancock WO, Wagenbach M et al. Kinesin’s tail domain is an inhibitory regulator of the motor domain. Nat Cell Biol 1999; 1:288–92.

    Article  CAS  PubMed  Google Scholar 

  34. Deacon S, Serpinskaya A, Vaughan P et al. Dynactin is required for bidirectional organelle trans-port. J Cell Biol 2003; 160:297–301.

    Article  CAS  PubMed  Google Scholar 

  35. Bezrezuk M, Schroer T. Dynactin enhances the processivity of kinesin-2. Traffic 2007; 8:124–9.

    Article  CAS  Google Scholar 

  36. Takeda S, Yamazaki H, Seog DH et al. Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associated vesicles important for neurite building. J Cell Biol 2000; 148:1255–65.

    Article  CAS  PubMed  Google Scholar 

  37. Fan J, Beck K. A role for the spectrin superfamily member Syne-1 and kinesin II in cytokinesis. J Cell Sci 2003; 117:619–29.

    Article  CAS  Google Scholar 

  38. Klopfenstein D, Tomishige M, Stuurman N et al. Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Uncl04 kinesin motor. Cell 2002; 109:347–58.

    Article  CAS  PubMed  Google Scholar 

  39. Tomishige M, Klopfenstein DR, Vale RD. Conversion of Uncl04/KIF1A kinesin into a processive motor after dimerization. Science 2002; 297:2263–7.

    Article  CAS  PubMed  Google Scholar 

  40. Spudich G, Chibalina M, Au JY et al. Myosin VI targeting to clathrincoated structures and dimerization is mediated by binding to Disabled-2 and PtdIns(4,5)P2. Nature Cell Biol 2007; 9:176–83.

    Article  CAS  PubMed  Google Scholar 

  41. Ridley A. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 2006; 16:522–9.

    Article  CAS  PubMed  Google Scholar 

  42. Krendel M, Mooseker M. Myosins: Tails (and heads) of functional diversity. Physiol 2005; 20:239–51.

    Article  CAS  Google Scholar 

  43. Egea G, Lázaro-Diéguez F, Vilella M. Actin dynamics at the Golgi complex in mammalian cells. Curr Op Cell Biol 2006; 18:168–78.

    Article  CAS  PubMed  Google Scholar 

  44. Smythe E, Ayscoug K. Actin regulation in endocytosis. J Cell Sci 2006; 119:4589–98.

    Article  CAS  PubMed  Google Scholar 

  45. Allan V, Thompson H, McNiven M. Motoring around the Golgi apparatus. Nat Cell Biol 2002; 4:E236–42.

    Article  CAS  PubMed  Google Scholar 

  46. Duran J, Valderrama F, Castel S et al. Myosin motors and not actin comets are mediators of the actin-based Golgi-to-endoplasmic reticulum protein transport. Mol Biol Cell 2003; 14:445–59.

    Article  CAS  PubMed  Google Scholar 

  47. Burkhardt J, Echeverri C, Nilsson T et al. Overexpression of the Dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J Cell Biol 1997; 139:469–84.

    Article  CAS  PubMed  Google Scholar 

  48. Vaisberg EA, Grissom PM, Mcintosh JR. Mammalian cells express three distinct dynein heavy chains that are localized to different cytoplasmic organelles. J Cell Biol 1996; 133:831–42.

    Article  CAS  PubMed  Google Scholar 

  49. Xu Y, Takeda S, Nakata T et al. Role of KIFC3 motor protein in Golgi positioning and integra-tion. J Cell Biol 2002; 158:293–303.

    Article  CAS  PubMed  Google Scholar 

  50. Allan V. Protein phosphatase 1 regulates the cytoplasmic dynein-driven formation of endoplasmic reticulum networks in vitro. J Cell Biol 1995; 128:879–91.

    Article  CAS  PubMed  Google Scholar 

  51. Wedlich-Soldner R, Schulz I, Straube A et al. Dynein supports motility of endoplasmic reticulum in the fungus Ustilago maydis. Mol Biol Cell 2002; 13:965–77.

    Article  CAS  PubMed  Google Scholar 

  52. Tabb JS, Molyneaux BJ, Cohen DL et al. Transport of ER vesicles on actin filaments in neurons by myosin V. J Cell Sci 1998; 111:3221–34.

    CAS  PubMed  Google Scholar 

  53. Wollert T, Weiss D, Gerdes HH et al. Activation of myosin V-based motility and F-actin-dependent network formation of endoplasmic reticulum during mitosis. J Cell Biol 2002; 159:571–7.

    Article  CAS  PubMed  Google Scholar 

  54. Warner C, Stewart A, Luzio J et al. Loss of myosin VI reduces secretion and the size of the Golgi in fibroblasts from SnelPs waltzer mice. EMBO J 2003; 22:569–79.

    Article  CAS  PubMed  Google Scholar 

  55. Sahlender D, Roberts R, Arden S et al. Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J Cell Biol 2005; 169:285–95.

    Article  CAS  PubMed  Google Scholar 

  56. Stephens DJ, Pepperkok R. Imaging of procollagen transport reveals COPI-dependent cargo sort-ing during ER-to-Golgi transport in mammalian cells. J Cell Sci 2002; 115:1149–60.

    CAS  PubMed  Google Scholar 

  57. Mironov A, Mironov AJ, Beznoussenko G et al. ER-to-Golgi carriers arrise through direct en bloc protrusion and multistage maturation of specialised ER exit domains. Dev Cell 2003; 5:583–94.

    Article  CAS  PubMed  Google Scholar 

  58. Fromme J, Schekman R. COPII-coated vesicles: Flexible enough for large cargo? Curr Op Cell Biol 2005; 17:345–52.

    Article  CAS  PubMed  Google Scholar 

  59. Stephens D. De novo formation, fusion and fission of mammalian COPII-coated endoplasmic reticulum exit sites. EMBO Rep 2003; 4:210–7.

    Article  CAS  PubMed  Google Scholar 

  60. Stephens DJ, Lin-Marq N, Pagano A et al. COPI coated ER-to-Golgi transport complexes segregate from COPII at ER exit sites. J Cell Sci 2000; 113:2177–85.

    CAS  PubMed  Google Scholar 

  61. Hammond A, Glick B. Dynamics of transitional endoplasmic reticulum sites in vertebrate cells. Mol Biol Cell 2000; 11:3013–30.

    CAS  PubMed  Google Scholar 

  62. Scales S, Pepperkok R, Kreis T. Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell 1997; 90:1137–48.

    Article  CAS  PubMed  Google Scholar 

  63. Hirose H, Arasaki K, Dohmae N et al. Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi. EMBO J 2004; 23:1267–78.

    Article  CAS  PubMed  Google Scholar 

  64. Presley JF, Cole NB, Schroer TA et al. ER-to-Golgi transport visualized in living cells. Nature 1997; 389:81–5.

    Google Scholar 

  65. Saraste J, Goud B. Functional symmetry of endomembranes. Mol Biol Cell 2007; 18:1430–6.

    Article  CAS  PubMed  Google Scholar 

  66. Appenzeller-Herzog C, Hauri HP. The ER-Golgi intermediate compartment (ERGIC): In search of its identity and function. J Cell Sci 2006; 119:2173–83.

    Article  CAS  PubMed  Google Scholar 

  67. Sannerud R, Marie M, Nizak C et al. Rabl defines a novel pathway connecting the pre-Golgi intermediate compartment with the cell periphery. Mol Biol Cell 2006; 17:1514–26.

    Article  CAS  PubMed  Google Scholar 

  68. Ben-Takaya H, Miura K, Pepperkok R et al. Live imaging of bidirectional traffic from the ERGIC/. J Cell Sci 2005; 118:357–67.

    Article  CAS  Google Scholar 

  69. Klumperman J, Schweizer A, Clausen H et al. The recycling pathway of protein ERGIC-53 and dynamics of the ER-Golgi intermediate compartment. J Cell Sci 1998; 111:3411–25.

    CAS  PubMed  Google Scholar 

  70. Shima D, Scales S, Kreis T et al. Segregation of COPI-rich and anterograde-cargo-rich domains in endoplasmic reticulum-to-Golgi transport complexes. Curr Biol 1999; 9:821–4.

    Article  CAS  PubMed  Google Scholar 

  71. Simpson J, Nilsson T, Pepperkok R. Biogenesis of tubular ER-to-Golgi transport intermediates. Mol Biol Cell 2006; 17:723–37.

    Article  CAS  PubMed  Google Scholar 

  72. Presley J, Ward T, Pfeifer A et al. Dissection of COPI and Arfl dynamics in vivo and role in Golgi membrane transport. Nature 2002; 417:187–93.

    Article  CAS  PubMed  Google Scholar 

  73. Chen JL, Fucini R, Lacomis L et al. Coatomer-bound Cdc42 regulates dynein recruitment to COPI vesicles. J Cell Biol 2005; 169:383–9.

    Article  CAS  PubMed  Google Scholar 

  74. Marra P, Salvatore L, Mironov Jr A et al. The biogenesis of the Golgi ribbon: The roles of membrane input from the ER and of GM130. Mol Biol Cell 2007; 18:1595–608.

    Article  CAS  PubMed  Google Scholar 

  75. Marra P, Maffucci T, Daniele T et al. The GM130 and GRASP65 Golgi proteins cycle through and define a subdomain of the intermediate compartment. Nature Cell Biol 2001; 3:1101–13.

    Article  CAS  PubMed  Google Scholar 

  76. Stauber T, Simpson J, Pepperkok R et al. A role for kinesin-2 in COPI-dependent recycling between the ER and the Golgi complex. Curr Biol 2006; 16:2245–51.

    Article  CAS  PubMed  Google Scholar 

  77. Le Bot N, Antony C, White J et al. Role of xklp3, a subunit of the Xenopus kinesin II heterotrimeric complex, in membrane transport between the endoplasmic reticulum and the Golgi apparatus. J Cell Biol 1998; 143(6): 1559–73.

    Article  PubMed  Google Scholar 

  78. Lippincott-Schwartz J, Yuan LC, Bonifacino JS et al. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldinA: Evidence for membrane cycling from the Golgi to the ER. Cell 1989; 56:801–13.

    Article  CAS  PubMed  Google Scholar 

  79. Sciaky N, Presley J, Smith C et al. Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J Cell Biol 1997; 139:1137–55.

    Article  CAS  PubMed  Google Scholar 

  80. Mardones G, Snyder C, Howell K. Cis-Golgi matrix proteins move direcdy to endoplasmic reticulum exit sites by association with tubules. Mol Biol Cell 2006; 17:525–38.

    Article  CAS  PubMed  Google Scholar 

  81. Lippincott-Schwartz J, Cole NB, Marotta A et al. Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic. J Cell Biol 1995; 128:293–306.

    Article  CAS  PubMed  Google Scholar 

  82. Robertson A, Allan V. Brefeldin A-dependent membrane tubule formation reconstituted in vitro is driven by a cell cycle-regulated microtubule motor. Mol Biol Cell 2000; 11:941–55.

    CAS  PubMed  Google Scholar 

  83. Dorner C, Ciossek T, Muller S et al. Characterization of KIF1C, a new kinesin-like protein involved in vesicle transport from the Golgi apparatus to the endoplasmic reticulum. J Biol Chem 1998; 273:20267–75.

    Article  CAS  PubMed  Google Scholar 

  84. Nakajima K, Takei Y, Tanaka Y et al. Molecular motor KIF1C is not essential for mouse survival and motor-dependent retrograde Golgi apparatus-to-endoplasmic reticulum transport. Mol Cell Biol 2002; 22:866–73.

    Article  CAS  PubMed  Google Scholar 

  85. Girod A, Storrie B, Simpson J et al. Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nature Cell Biol 1999; 1:423–30.

    Article  CAS  PubMed  Google Scholar 

  86. Matanis T, Akhmanova A, Wulf P et al. Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein-dynactin motor complex. Nat Cell Biol 2002; 4:986–92.

    Article  CAS  PubMed  Google Scholar 

  87. White J, Johannes L, Mallard F et al. Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J Cell Biol 1999; 147:743–59.

    Article  CAS  PubMed  Google Scholar 

  88. Young J, Stauber T, del Nery E et al. Regulation of microtubule-dependent recycling at the trans-Golgi network by Rab6A and Rab6A’. Mol Biol Cell 2005; 16:162–77.

    Article  CAS  PubMed  Google Scholar 

  89. Echard A, Jollivet F, Martinez O et al. Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 1998; 279:580–5.

    Article  CAS  PubMed  Google Scholar 

  90. Fontijn R, Goud B, Echard A et al. The human kinesin-like protein RB6K is under tight cell cycle control and is essential for cytokinesis. Mol Cell Biol 2001; 21:2944–55.

    Article  CAS  PubMed  Google Scholar 

  91. Hill E, Clarke M, Barr F. The Rab6-binding kinesin, Rab6-KIFL, is required for cytokinesis. EMBO J 2000; 19:5711–9.

    Article  CAS  PubMed  Google Scholar 

  92. Hoogenraad C, Akhmanova A, Howell S et al. Mammalian Golgi-associated Bicaudal-D2 functions in the dynein-dynactin pathway by interacting with these complexes. EMBO J 2001; 20:4041–54.

    Article  CAS  PubMed  Google Scholar 

  93. Short B, Preisinger C, Schaletzky J et al. The Rab6 GTPase regulates recruitment of the dynactin complex to Golgi membranes. Curr Biol 2002; 12:1792–5.

    Article  CAS  PubMed  Google Scholar 

  94. Welte M. Bidirectional transport along microtubules. Curr Biol 2004; l4:R525–37.

    Article  CAS  Google Scholar 

  95. Govindan B, Bowser R, Novick P. The role of Myo2, a yeast class V myosin, in vesicular transport. J Cell Biol 1995; 128:1055–68.

    Article  CAS  PubMed  Google Scholar 

  96. Rodriguez-Boulan E, Miisch A. Protein sorting in the Golgi complex: Shifting paradigms. Biochim Biophys Acta 2005; 1744:455–64.

    Article  CAS  PubMed  Google Scholar 

  97. Hirschberg K, Miller CM, Ellenberg J et al. Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells. J Cell Biol 1998; 143:1485–503.

    Article  CAS  PubMed  Google Scholar 

  98. Keller P, Toomre D, Diaz E et al. Multicolour imaging of post-Golgi sorting and trafficking in live cells. Nature Cell Biol 2001; 3:140–8.

    Article  CAS  PubMed  Google Scholar 

  99. Polishchuk R, Polishchuk E, Marra P et al. GFP-based correlative light-electron microscopy reveals the saccular-tubular ultrastructure of carriers in transit from the Golgi apparatus to the plasma membrane. J Cell Biol 2000; 148:45–58.

    Article  CAS  PubMed  Google Scholar 

  100. Toomre D, Keller P, White J et al. Dual-colour visualization of trans-Golgi network to plasma membrane traffic along microtubules in living cells. J Cell Sci 1999; 112:21–33.

    CAS  PubMed  Google Scholar 

  101. Wacker I, Kaether C, Kromer A et al. Microtubule-dependent transport of secretory vesicles visualized in real time with a GFP-tagged secretory protein. J Cell Sci 1997; 110:1453–63.

    CAS  PubMed  Google Scholar 

  102. Polishchuk E, Di Pentima A, Luini A et al. Mechanism of constitutive export from the Golgi: Bulk flow via the formation, protrusion, and en bloc cleavage of large trans-Golgi network tubular domains. Mol Biol Cell 2003; 14:4470–85.

    Article  CAS  PubMed  Google Scholar 

  103. Grigoriev I, Splinter D, Keijzer N et al. Rab6 regulates transport and targeting of exocytic carriers. Dev Cell 2007; 13:305–14.

    Article  CAS  PubMed  Google Scholar 

  104. Desnos C, Schonn JS, Huet S et al. Rab27A and its effector MyRIP link secretory granules to F-actin and control their motion towards release sites. J Cell Biol 2003; 163:559–70.

    Article  CAS  PubMed  Google Scholar 

  105. Varadi A, Ainscow E, Allan V et al. Conventional kinesin in regulated exocytosis in b-cells. J Cell Sci 2002; 115:4177–89.

    Article  CAS  PubMed  Google Scholar 

  106. Varadi A, Tsuboi T, Rutter G. Myosin Va transports dense core secretory vesicles in pancreatic MIN6 b-cells. Mol Biol Cell 2005; 16:2670–80.

    Article  CAS  PubMed  Google Scholar 

  107. Rudolf R, Kögel T, Kuznetsov S et al. Myosin Va facilitates the distribution of secretory granules in the F-actin rich cortex of PC12 cells. J Cell Sci 2003; 116:1339–48.

    Article  CAS  PubMed  Google Scholar 

  108. Maxfield F, McGraw T. Endocytic recycling. Nat Rev Mol Cell Biol 2004; 5:121–32.

    Article  CAS  PubMed  Google Scholar 

  109. Nakagawa T, Setou M, Seog D et al. A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell 2000; 103(4):569–81.

    Article  CAS  PubMed  Google Scholar 

  110. Merrifield C, Feldman M, Wan L et al. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat Cell Biol 2002; 4:691–8.

    Article  CAS  PubMed  Google Scholar 

  111. Morris S, Arden S, Roberts R et al. Myosin VI binds to and localises with Dab2, potentially linking receptor-mediated endocytosis and the actin cytoskeleton. Traffic 2002; 3:331–41.

    Article  CAS  PubMed  Google Scholar 

  112. Kouranti I, Sachse M, Arouche N et al. Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Curr Biol 2006; 16:1719–25.

    Article  CAS  PubMed  Google Scholar 

  113. Provance Jr D, Gourley C, Silan C et al. Chemical-genetic inhibition of a sensitized mutant myosin Vb demonstrates a role in peripheral-pericentriolar membrane traffic. Proc Natl Acad Sci USA 2004; 101:1868–73.

    Article  CAS  PubMed  Google Scholar 

  114. Yan Q, Sun W, Kujala P et al. CART: An Hrs/actinin-4/BERP/myosin V protein complex required for efficient receptor recycling. Mol Biol Cell 2005; 16:2470–82.

    Article  CAS  PubMed  Google Scholar 

  115. Rink J, Ghigo E, Kalidzidis Y et al. Rab conversion as a mechanism of progression from early to late endosomes. Cell 2005; 122:735–49.

    Article  CAS  PubMed  Google Scholar 

  116. Driskell O, Mironov Jr A, Allan V et al. Dynein is required for receptor sorting and the morphogenesis of early endosomes. Nat Cell Biol 2007; 9:113–20.

    Article  CAS  PubMed  Google Scholar 

  117. Hehnly H, Sheff D, Stamnes M. Shiga toxin facilitates its retrograde transport by modifying microtubule dynamics. Mol Biol Cell 2006; 17:4379–89.

    Article  CAS  PubMed  Google Scholar 

  118. Hoepfner S, Severin F, Cabezas A et al. Modulation of receptor recycling and degradation by the endosomal kinesin KIF1B. Cell 2005; 121:437–50.

    Article  CAS  PubMed  Google Scholar 

  119. Pal A, Severin F, Lammer B et al. Hunitingtin-HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington’s disease. J Cell Biol 2006; 172:605–18.

    Article  CAS  PubMed  Google Scholar 

  120. Salas-Cortes L, Ye F, Tenza D et al. Myosin lb modulates the morphology and the protein transport within multi-vesicular sorting endosomes. J Cell Sci 2005; 118:4823–32.

    Article  CAS  PubMed  Google Scholar 

  121. Lalli G, Gschmeissner S, Schiavo G. Myosin Va and microtubule-based motors are required for fast axonal retrograde transport of tetanus toxin in motor neurons. J Cell Sci 2003; 116:4639–50.

    Article  CAS  PubMed  Google Scholar 

  122. Wedlich-Soldner R, Straube A, Friedrich M et al. A balance of KIFlA-like kinesin and dynein organizes early endosomes in the fungus Ustilago maydis. EMBO J 2002; 21:2946–57.

    Article  CAS  PubMed  Google Scholar 

  123. Hafezparast M, Klocke R, Ruhrberg C et al. Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 2003; 300:808–12.

    Article  CAS  PubMed  Google Scholar 

  124. Bananis E, Murray J, Stockert R et al. Regulation of early endocytic vesicle motility and fission in a reconstituted system. J Cell Sci 2003; 116:2749–61.

    Article  CAS  PubMed  Google Scholar 

  125. Bananis E, Murray J, Stockert R et al. Microtubule and motor-dependent endocytic vesicle sorting in vitro. J Cell Biol 2000; 151:179–86.

    Article  CAS  PubMed  Google Scholar 

  126. Barbero P, L B, Pfeffer S. Visualization of Rab9-mediated vesicle transport from endosomes to the trans-Golgi in living cells. J Cell Biol 2002; 156:511–8.

    Article  CAS  PubMed  Google Scholar 

  127. Matteoni R, Kreis TE. Translocation and clustering of endosomes and lysosomes depeds on microtubules. J Cell Biol 1987; 105:1253–65.

    Article  CAS  PubMed  Google Scholar 

  128. Valetti C, Wetzel D, Schrader M et al. Role of dynactin in endocytic traffic: Effects of dynamitin overexpression and colocalization with CLIP-170. Mol Biol Cell 1999; 10:4107–20.

    CAS  PubMed  Google Scholar 

  129. Cantalupo G, Alifano P, Roberti V et al. Rab-interacting lysosomal protein (RILP): The Rab7 effector required for transport to lysosomes. EMBO J 2001; 20:683–93.

    Article  CAS  PubMed  Google Scholar 

  130. Jordens I, Fernandez-Borja M, Marsman M et al. The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Curr Biol 2001; 11:1680–5.

    Article  CAS  PubMed  Google Scholar 

  131. Johansson M, Rocha N, Zwart W et al. Activation of endosomal dynein motors by stepwise assembly of Rab7-RILP-pl50Glued, ORP1L and the receptor bill spectrin. J Cell Biol 2007; 176:459–71.

    Article  CAS  PubMed  Google Scholar 

  132. Marsman M, Jordens I, Rocha N et al. A splice variant of RILP induces lysosomal clustering independent of dynein recruitment. Biochem Biophys Res Comm 2006; 344:747–56.

    Article  CAS  PubMed  Google Scholar 

  133. Wang T, Hong W. Interorganellar regulation of lysosome positioning by the Golgi apparatus through Rab34 interaction with Rab-interacting lysosomal protein. Mol Biol Cell 2002; 13:4317–32.

    Article  CAS  PubMed  Google Scholar 

  134. Brown C, Maier K, Stauber T et al. Kinesin-2 is a motor for late endosomes and lysosomes. Traffic 2005; 6:1114–24.

    Article  CAS  PubMed  Google Scholar 

  135. Bananis E, Nath S, Gordon K et al. Microtubule-dependent movement of late endocytic vesicles in vitro: Requirements for dynein and kinesin. Mol Biol Cell 2004; 15:3688–97.

    Article  CAS  PubMed  Google Scholar 

  136. Hollenbeck PJ, Swanson JA. Radial extension of macrophage tubular lysosomes supported by kinesin. Nature 1990; 346:864–6.

    Article  CAS  PubMed  Google Scholar 

  137. Matsushita M, Tanaka S, Nakamura N et al. A novel kinesin-like protein, KIFlBbeta3 is involved in the movement of lysosomes to the cell periphery in non-neuronal cells. Traffic Mar 2004; 5(3):140–51.

    Article  CAS  Google Scholar 

  138. Santama N, Krijnse-Locker J, Griffiths G et al. KIF2beta, a new kinesin superfamily protein in non-neuronal cells, is associated with lysosomes and may be implicated in their centrifugal translocation. EMBO J 1998; 17(20):5855–67.

    Article  CAS  PubMed  Google Scholar 

  139. van Deurs B, Holm P, Kayser L et al. Delivery to lysosomes in the human carcinoma eel line HEp-2 involves and actin filament-facilitated fusion between mature endosomes and pre-existing lysosomes. Eur J Cell Biol 1995; 66:309–23.

    PubMed  Google Scholar 

  140. Hölttä-Vuori M, Alpy F, Tanhuanpaa K et al. MLN64 is invovled in actin-mediated dynamics of late endocytic organelles. Mol Biol Cell 2005; 16:3873–86.

    Article  PubMed  CAS  Google Scholar 

  141. Soni L, Warren C, Bucci C et al. The unconventional myosin-VIIa associates with lysosomes. Cell Motil Cytoskel 2005; 62:13–26.

    Article  CAS  Google Scholar 

  142. Ang A, Taguchi T, Francis S et al. Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. J Cell Biol 2004; 167:531–43.

    Article  CAS  PubMed  Google Scholar 

  143. van IJzendoorn S. Recycling endosomes. J Cell Sci 2006; 119:1679–81.

    Article  PubMed  CAS  Google Scholar 

  144. Lin S, Gundersen G, Maxfield F. Export from pericentriolar endocytic recycling compartment to cell surface depends on stable detyrosinated (Glu) microtubules and kinesin. Mol Biol Cell 2002; 13:96–109.

    Article  CAS  PubMed  Google Scholar 

  145. Lapierre L, Kumar R, Hales C et al. Myosin Vb is associated with plasma membrane recycling systems. Mol Biol Cell 2001; 12:1843–57.

    CAS  PubMed  Google Scholar 

  146. Rodriguez O, Cheney R. Human myosin-Vc is a novel class V myosin expressed in epithelial cells. J Cell Sci 2002; 115:991–1004.

    CAS  PubMed  Google Scholar 

  147. Hales C, Vaerman JP, Goldenring J. Rabll family interacting protein 2 associates with myosin Vb and regulates plasma membrane recycling. J Biol Chem 2002; 277:50415–21.

    Article  CAS  PubMed  Google Scholar 

  148. Stinchcombe J, Majorovits E, Bossi G et al. Centrosome polarisation delivers secretory granules to the immunological synapse. Nature 2006; 443:462–5.

    Article  CAS  PubMed  Google Scholar 

  149. Seabra M, Coudrier E. Rab GTPases and myosin motors in organelle motility. Traffic 2004; 5:393–9.

    Article  CAS  PubMed  Google Scholar 

  150. Karcher R, Roland J, Zappacosta F et al. Cell cycle regulation of myosin-V by calcium/ calmodulin-dependent protein kinase II. Science 2001; 293:1317–20.

    Article  CAS  PubMed  Google Scholar 

  151. Rogers S, Karcher R, Roland J et al. Regulation of melanosome movement in the cell cycle by reversible association with myosin V. J Cell Biol 1999; 146:1265–75.

    Article  CAS  PubMed  Google Scholar 

  152. Patki V, Buxton J, Chawla A et al. Insulin action of GLUT4 traffic visualized in single 3T3-L1 adipocytes by using ultra-fast microscopy. Mol Biol Cell 2001; 12:129–41.

    CAS  PubMed  Google Scholar 

  153. Imamura T, Huang J, Usui I et al. Insulin-induced GLUT4 translocation involves protein kinase C-l-mediated functional coupling between Rab4 and the motor protein kinesin. Mol Cell Biol 2003; 23:4892–900.

    Article  CAS  PubMed  Google Scholar 

  154. Semiz S, Park JG, Nicoloro SM et al. Conventional kinesin KIF5B mediates insulin-stimulated GLUT4 movements on microtubules. EMBO J 2003; 22(10):2387–99.

    Article  CAS  PubMed  Google Scholar 

  155. Huang J, Imamura T, Olefsky J. Insulin can regulate GLUT4 internalization by signaling to Rab5 and the motor protein dynein. Proc Natl Acad Sci USA 2001; 98:13084–9.

    Article  CAS  PubMed  Google Scholar 

  156. Wubbolts R, Fernandez-Borja M, Jordens I et al. Opposing motor activities of dynein and kinesin determine retention and transport of MHC class II-containing compartments. J Cell Sci 1999; 112:785–95.

    CAS  PubMed  Google Scholar 

  157. Reilen A, Serpinskaya A, Karcher R et al. Differential regulation of dynein-driven melanosome movement. Biochem Biophys Res Comm 2003; 309:652–8.

    Article  CAS  Google Scholar 

  158. Levi V, Serpinskaya A, Gratton E et al. Organelle transport along microtubulesin Xenopus melanophores: Evidence for cooperation between multiple motors. Biophys J 2006; 90:318–27.

    Article  CAS  PubMed  Google Scholar 

  159. Gross S, Tuma M, Deacon S et al. Interactions and regulation of molecular motors in Xenopus melanophores. J Cell Biol 2002; 156:855–65.

    Article  CAS  PubMed  Google Scholar 

  160. Kural C, Kim H, Syed S et al. Kinesin and dynein move a peroxisome in vivo: A tug-of-war or coordinated movement? Science 2005; 308:1469–72.

    Article  CAS  PubMed  Google Scholar 

  161. Ligon L, Tokito M, Finkelstein J et al. A direct interaction between cytoplasmic dynein and kinesin I may coordinate motor activity. J Biol Chem 2004; 279:19201–8.

    Article  CAS  PubMed  Google Scholar 

  162. Ali M, Krementsova E, Kennedy G et al. Myosin Va maneuvers through actin intersections and diffuses along microtubules. Proc Natl Acad Sci USA 2007; 104:4332–6.

    Article  CAS  PubMed  Google Scholar 

  163. Wu X, Tsan G, Hammer Illrd J. Melanophilin and myosin Va track the microtubule plus end on EB1. J Cell Biol 2005; 171:201–7.

    Article  CAS  PubMed  Google Scholar 

  164. Holleran E, Ligon L, Tokito M et al. bill spectrin binds to the Arpl subunit of dynactin. J Biol Chem 2001; 276:36598–605.

    Article  CAS  PubMed  Google Scholar 

  165. Toyoshima I, Yu H, Steuer ER et al. Kinectin, a major kinesin-binding protein on ER. J Cell Biol 1992; 118:1121–31.

    Article  CAS  PubMed  Google Scholar 

  166. Susalka S, Hancock W, Pfister K. Distinct cytoplasmic dynein complexes are transported by different mechanisms in axons. Biochim Biophys Acta 2000; 1496:76–88.

    Article  CAS  PubMed  Google Scholar 

  167. Pfister K, Fisher E, Gibbons I et al. Cytoplasmic dynein nomenclature. J Cell Biol 2005; 171:411–3.

    Article  CAS  PubMed  Google Scholar 

  168. Miki H, Setou M, Kaneshiro K et al. All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci USA 2001; 98:7004–11.

    Article  CAS  PubMed  Google Scholar 

  169. Vale R. The molecular motor toolbox for intracellular transport. Cell 2003; 112:467–80.

    Article  CAS  PubMed  Google Scholar 

  170. Marszalek J, Goldstein L. Understanding the functions of kinesin II. Biochim Biophys Acta 2000; 1496:142–50.

    Article  CAS  PubMed  Google Scholar 

  171. Gupta V, Palmer KJ, Spence P et al. Kinesin-1 (uKHC/KIF5B) is required for bidirectional motility of ER exit sites and efficient ER-to-Golgi transport. Traffic 2008; 9:1850–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria J. Allan .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Wozniak, M.J., Allan, V.J. (2009). Carrier Motility. In: Trafficking Inside Cells. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-93877-6_12

Download citation

Publish with us

Policies and ethics