Skip to main content

Biological Interaction of Extremely-Low-Frequency Electromagnetic Fields

  • Chapter
  • First Online:
Biological Effects of Magnetic and Electromagnetic Fields

Concluding Remarks

Evidence is growing for a central role of cell membranes in the reception, transduction and amplification of signals imposed by ELF fields. A major challenge for the future will be the elucidation of specific molecular pathways through which these fields can influence transmembrane signaling events and affect the functional and proliferative states of cells and organized tissues. Of particular importance will be studies on possible mechanisms through which ELF fields may play a role in the development of tumors. At the present time there is little evidence for a promoting or copromoting effect of ELF magnetic fields on tumor development, with the possible exception of mammary tumors in which endocrine alterations resulting from field exposure may play an important role. Further research is needed to gain an understanding of the ELF signal characteristics that are the most biologically effective, and to define the threshold field parameters above which predictable biological responses occur. Recent laboratory studies have provided a number of clues on the pathways through which ELF fields may operate at the cellular and subcellular levels. However, a great deal of research lies ahead in order to fully characterize the molecular substrates of ELF field interactions and the resultant cascade of electrical and biochemical signals that lead to cellular and tissue responses, including possible carcinogenic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • R.K. Adair, Constraints on biological effects of weak extremely-low-frequency electromagnetic fields. Phys. Rev., A43:1039–1048, 1991.

    Google Scholar 

  • R.K. Adair, Criticism of Lednev’s mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics13:231–235, 1992.

    Google Scholar 

  • W.R. Adey, Tissue interactions with nonionizing electromagnetic fields. Physiol. Rev.61:435–514, 1981.

    Google Scholar 

  • W.R. Adey, Nonlinear electrodynamics in cell membrane transductive coupling. In: Membrane Transport and Information Storage, Vol. 4., R.C. Aloia, C.C. Curtain, and L.M. Gordon, eds., pp. 1–27, Wiley-Liss. New York, 1990a.

    Google Scholar 

  • W.R. Adey, Electromagnetic fields, cell membrane amplification, and cancer promotion. In: Extremely-Low-Frequency Electromagnetic Fields: The Question of Cancer, B.W. Wilson, R.G. Stevens, and L.E. Anderson, eds., pp. 211–249. Battelle Press, Columbus, Ohio, 1990b.

    Google Scholar 

  • D.L. Alkon and H. Rasmussen, A spatial-temporal model of cell activation, Science239:998–1005, 1988.

    ADS  Google Scholar 

  • L.E. Anderson, ELF: Exposure levels, bioeffects, and epidemiology. Health Phys.61:41–46, 1991.

    Google Scholar 

  • S.M. Bawin and W.R. Adey, Sensitivity of calcium binding in cerebral tissue to weak environmental electrical fields oscillating at low frequency, Proc. Natl. Acad. Sci. (USA)73:1999–2003, 1976.

    ADS  Google Scholar 

  • D.Sh. Beniashvili, V.G. Bilanishvili, and M.Z. Menabde, Low-frequency electromagnetic radiation enhances the induction of rat mammary tumors by nitrosomethylurea, Cancer Lett.61:75–79, 1991.

    Google Scholar 

  • CF. Blackman, S.G. Benane, L.S. Kinney, D.E. House, and W.J. Joines, Effects of ELF fields on calcium-ion efflux from brain tissue in vitro. Bioelectromagnetics6, 1–11, 1985.

    Google Scholar 

  • C. Bruckner-Lea, C.H. Durney, J. Janata, C. Rappaport, and M. Kaminski, Calcium binding to metallochromic dyes and calmodulin in the presence of combined AC-DC magnetic fields. Bioelectromagnetics 13:147–162, 1992.

    Google Scholar 

  • H. Brugere, F. Pupin, and J. Lambrozo, Effects of 50-Hz magnetic fields on ENU-induced brain tumors in rats. Bioelectromagnetics, submitted for publication.

    Google Scholar 

  • C.V. Byus, R.L. Lundak, R.M. Fletcher, and W.R. Adey, Alterations in protein kinase activity following exposure of cultured human lymphocytes to modulated microwave fields. Bioelectromagnetics5:341–351, 1984.

    Google Scholar 

  • C.D. Cain, W.R. Adey, and R.A. Luben, Evidence that pulsed electromagnetic fields inhibit coupling of adenylate cyclase by parathyroid hormone in bone cells. J. Bone Min. Res.2:437–441, 1987.

    Google Scholar 

  • P.A. Demers, D.B. Thomas, K.A. Rosenblatt, L.M. Jimenez, A McTiernan, H. Stalsberg, A. Stemhagen, W.D. Thompson, M.F. McCrea-Curnen, W. Satariano, D.F. Austin, P. Isacson, R.S. Greenberg, C. Key, L.N. Kolonel and D.W. West, Occupational exposure to electromagnetic fields and breast cancer in men, Am. J. Epidemiol.13:340–347, 1991.

    Google Scholar 

  • H.M. Fishman and H.R. Leuchtag, Electrical noise in physics and biology, Curr. Top. Membr. Transport37:3–35, 1990.

    Google Scholar 

  • R. Goodman and A.S. Henderson, Transcription and translation in cells exposed to extremely-low-frequency electromagnetic fields. Bioelectrochem. Bioenerg.25:335–355, 1991.

    Google Scholar 

  • C. Graham, M.R. Cook, and H.D. Cohen, Immunological and Biochemical Effects of 60-Hz Electric and Magnetic Fields in Humans, Midwest Res. Inst. Final Rep., Contract No. DE-FC01-84-CE-76246 (Order No. DE90006671), U.S. Department of Energy, Office of Scientific and Technical Information, Oak Ridge, Tennessee, 1990.

    Google Scholar 

  • B. Halle, On the cyclotron resonance mechanism for magnetic field effects on transmembrane ion conductivity, Bioelectromagnetics9:381–385, 1988.

    Google Scholar 

  • M. Kato, K. Honma, T. Shigemitsu, and Y. Shiga, Effects of exposure to circularly polarized 50-Hz magnetic field on plasma and pineal melatonin levels in rats, Bioelectromagnetics14:97–106, 1993.

    Google Scholar 

  • J.L. Kirschvink, D.S. Jones, and B.J. MacFadden, eds., Magnetite Biomineralization and Magneto-reception in Animals: A New Biomagnetism. Plenum Press, New York, 1985.

    Google Scholar 

  • J.L. Kirschvink, Biogenic magnetite and magnetoreception, Bioelectromagneticsl0:239–259, 1989.

    Google Scholar 

  • J.L. Kirschvink, A. Kobayashi-Kirschvink, and F.B. Woodford, Magnetite biomineralization in the human brain, Proc. Natl. Acad. Sci. (USA)89:7683–7687, 1992a.

    ADS  Google Scholar 

  • J.L. Kirschvink, A. Kobayashi-Kirschvink, J. Diaz-Ricci, and S.J. Kirschvink, Magnetite in human tissues: A mechanism for the biological effects of weak ELF magnetic fields, BioelectromagneticsSuppl.1:101–113, 1992b.

    Google Scholar 

  • J.L. Kirschvink and A. Kobayashi-Kirschvink, Magnetite biomineralization in human tissues, In: Abstracts of the XXIVth General Assembly of the International Union of Radio Science, Abstract K1-8, p. 512, Kyoto, Japan, August 25–September 2, 1993.

    Google Scholar 

  • V.V. Lednev, Possible mechanism for the influence of weak magnetic fields on biological systems, Bioelectro-magnetics12:71–75, 1991.

    Google Scholar 

  • A. Lerchl, K.O. Nonaka, K.A. Stokkan, and R.J. Reiter, Marked rapid alterations in nocturnal pineal serotonin metabolism in mice and rats exposed to weak intermittent magnetic fields, Biochem. Biophys. Res. Commun.169:102–108, 1990.

    Google Scholar 

  • A.R. Liboff, Geomagnetic cyclotron resonance in living cells, J. Biol. Phys.13:99–102, 1985.

    Google Scholar 

  • A.R. Liboff, R.J. Rozek, M.L. Sherman, B.R. McLeod, and S.D. Smith, 45Ca++ cyclotron resonance in human lymphocytes, J. Bioelectr.6:13–22, 1987.

    Google Scholar 

  • A.R. Liboff and W.C. Parkinson, Search for ion-cyclotron resonance in a Na+-transport system, Bioelectromagnetics12:77–83, 1991.

    Google Scholar 

  • R.P. Liburdy, Calcium signaling in lymphocytes and ELF fields, FEBS Lett.301:53–59, 1992.

    Google Scholar 

  • D.P. Loomis, D.A. Savitz and C.V. Ananth, Breast cancer mortality among female electrical workers in the United States, J. Natl. Cancer Inst.86:921–925, 1994.

    Google Scholar 

  • W. Löscher, M. Mevissen, W. Lehmacher, and A. Stamm, Tumor promotion in a breast cancer model by exposure to a weak alternating magnetic field, Cancer Lett.71:75–81, 1993.

    Google Scholar 

  • R.A. Luben, CD. Cain, M.C.Y. Chen, D.M. Rosen, and W.R. Adey, Inhibition of parathyroid hormone actions on bone cells in culture by induced low energy electromagnetic fields, Proc. Natl. Acad. Sci. (USA)79:4180–4184, 1982.

    ADS  Google Scholar 

  • R.A. Luben, Effects of low-energy electromagnetic fields (pulsed and DC) on membrane signal transduction processes in biological systems, Health Phys.61:15–28, 1991.

    Google Scholar 

  • G.M. Matanoski, P.N. Breysse and E.A. Elliott, Electromagnetic field exposure and male breast cancer, Lancet337:737, 1991.

    Google Scholar 

  • J.R.N. McLean, M.A. Stuchly, R.E.J. Mitchell, D. Wilkinson, H. Yang, M. Goddard, D.W. Lecuyer, M.M. Schunk, E. Callary, and D. Morrison, Cancer promotion in a mouse-skin model by a 60-Hz magnetic field: II. Tumor development and immune response. Bioelectromagnetics12:273–287, 1991.

    Google Scholar 

  • M. Mevissen, A. Stamm, S. Buntenkötter, R. Zwingelbert, U. Wahnschaffe, and W. Löscher, Effects of magnetic fields on mammary tumor development induced by 7,12-dimethylbenz(a)anthracene in rats, Bioelectromagnetics14:131–143, 1993.

    Google Scholar 

  • M.G. Monti, L. Pernecco, M.S. Moruzzi, R. Battini, P. Zaniol, and B. Barbiroli, Effect of ELF pulsed electromagnetic fields on protein kinase C activation process in HL-60 leukemia cells, J Bioelectr.10:119–130, 1991.

    Google Scholar 

  • I. Nair, M. G. Morgan, and U.K. Florig, Biological Effects of Power Frequency Electric and Magnetic Fiehls. Rep. No. OTA-BP-E-53, Office of Technology Assessment. U.S. Government Printing Office, Washington, DC, 1989.

    Google Scholar 

  • National Radiological Protection Board, Electromagnetic Fields and the Risk of Cancer, Documents of the NRPB Vol. 3, No. 1, 1992.

    Google Scholar 

  • W.C. Parkinson and C.T. Hanks, Search for cyclotron resonance in cells in vitro, Bioelectromagnetics10:129–149, 1989.

    Google Scholar 

  • W.C. Parkinson and G.L. Sulik, Diatom response to extremely-low-frequency magnetic fields, Rudiat. Res.130:319–330, 1992.

    Google Scholar 

  • A.A. Pilla, Slate of the art in electromagnetic therapeutics. In: Electricity and Magnetism in Biology and Medicine, M. Blank, ed., pp. 17–22. San Francisco Press, San Francisco, California, 1993.

    Google Scholar 

  • E. Postow and M.L. Swicord, Modulated fields and “window” effects, In: Handbook of Biological Effects ol Electromagnetic Fields, E. Postow and C. Polk, eds., pp. 425–460, CRC Press, Boca Raton. Florida, 1986.

    Google Scholar 

  • A. Kannug, T. Ekström, K.H. Mild, B. Holmberg, I. Gimenez-Conti, and T.J. Slaga, A study on skin tumor formation in mice with 50-Hz magnetic field exposure, Carcinogenesis14:573–578, 1993a.

    Google Scholar 

  • A. Rannug, B. Holmberg, T. Ekström, and K.H. Mild, Rat liver foci study on cocxposure with 50-Hz magnetic fields and known carcinogens, Bioeleetromagnetics14: 17–27, 1993b.

    Google Scholar 

  • A. Rannug, B. Holmberg, and K.H. Mild, A rat liver foci promotion study with 50-Hz magnetic fields, Environ Res.62:223–229, 1993c.

    Google Scholar 

  • A. Rannug, B. Holmberg, T. Ekström, K.H. Mild, I. Gimenez-Conti, and T.J. Slaga, Intermittent 50-Hzmagnetic field and skin tumor promotion in SENCAR mice, Carcinogenesis15:153–157, 1994.

    Google Scholar 

  • I.A. Shuvalova, MV. Ostrovskaya, V.A. Sosunov, and V.V. Lednev, Influence of a weak magnetic field under conditions of paramagnetic resonance on the rate ofcalmodulin-dependent phosphorylation of myosin in solution, Proc. Nail. Acad. Sci. (USSR)317:227–230, 1991.

    Google Scholar 

  • S.D. Smith, B.R. McLeod, A.R. Liboff, and K. Cooksey, Calcium cyclotron resonance and diatom mobility, Bioelcctromagnetics8:215–227, 1987.

    Google Scholar 

  • R.G. Stevens, S. Davis, D.B. Thomas, L.E., Anderson, and B.W. Wilson, Electric power, pineal function, and the risk ofbreast cancer, FASEB. J.6:853–860, 1992.

    Google Scholar 

  • M.A. Stuchly, J.R.N. McLean, R. Burnett, M. Goddard, D.W. Lecuyer, and R.E.J. Mitchel, Modification of tumor promotion in the mouse skin by exposure to an alternating magnetic field, Cancer Lett.65: 1–7, 1992.

    Google Scholar 

  • L. Tamarkin, M. Cohen, D. Roselle, C. Reichert, M. Lippman, and B. Chabner, Mclatonin inhibition and pinealectomy enhancement of 7.12-dimethylbenz(a)anthracene-induced mammary tumors in the ral, Cancer Res. 41:4432–4436, 1981.

    Google Scholar 

  • L.S. Taylor, The mechanisms of athermal microwave biological effects, Bioelectromagnetics2:259–267, 1981.

    Google Scholar 

  • T. Tenforde, Microclectrophorctic studies on the surface chemistry of crythrocytcs, Adv. Biol. Med. Phys.13:43–105, 1970.

    Google Scholar 

  • T.S. Tenforde and W.T. Kaune, Interaction of extremely-low-frequency electric and magnetic fields with humans, Health Phys.53:5S5–606, 1987.

    Google Scholar 

  • T.S. Tenl’orde, Biological interactions of extremely-low-frequency electric and magnetic fields, Bioelectrochem. Bioenerg.25:1–17, 1991.

    Google Scholar 

  • T.S. Tenforde, Biological interactions and potential health effects of extremely-low-frequency magnetic fields from power lines and other common sources, Annu. Rev. Publ. Health13:173–196, 1992.

    Google Scholar 

  • T.S. Tenforde, Cellular and molecular pathways of extremely-low-frequency electromagnetic field interactions with living systems, In: Electricity and Magnetism in Biology and Medicine, M. Blank, ed., pp. 1–8, San Francisco Press, San Francisco, California, 1993.

    Google Scholar 

  • G.P. Thériault, Health effects of electromagnetic radiation on workers: Epidemiologic studies, In: Proc. Scientific Workshop on the Health Effects of Electric and Magnetic Fields on Workers, P.J. Bierbaum and J.M. Peters, eds., pp. 91–124, DHHS (NIOSH) Publ. No. 91-111, Cincinnati, Ohio, 1991.

    Google Scholar 

  • T. Tynes, A. Andersen and F. Langmark, Incidence of cancer in Norwegian workers potentially exposed to electromagnetic fields, Am. J. Epidemiol.136:81–88, 1992.

    Google Scholar 

  • E.P. Washburn, M.J. Orza, J.A. Berlin, W.J. Nicholson, A.C. Todd, H. Frumkin and T.C. Chalmers, Residential proximity to electricity transmission and distribution equipment and risk of childhood leukemia, childhood lymphoma, and childhood nervous system tumors: Systematic review, evaluation, and meta-analysis, Cancer Causes and Cont.5:299–309, 1994.

    Google Scholar 

  • J.C. Weaver and R.D. Astumian, The response of living cells to very weak electric fields: The thermal noise limit, Science247:459–462, 1990.

    ADS  Google Scholar 

  • J.C. Weaver and R.D. Astumian, ELF biological threshold estimates: An approach for electric fields based on noise and mechanism models, BioelectromagneticsSuppl. 1:119–138, 1992.

    Google Scholar 

  • N. Wertheimer and E. Leeper, Electrical wiring configurations and childhood cancer, Am. J. Epidemiol.109:273–284, 1979.

    Google Scholar 

  • B.W. Wilson, L.E. Anderson, D.I. Hilton, and R.D. Phillips, Chronic exposure to 60-Hz electric fields: Effects on pineal function in the rat, Bioelectromagnetics2:371–380, 1981 [erratum: 4:293, 1983].

    Google Scholar 

  • M.N. Zhadin and E.E. Fesenko, Ionic cyclotron resonance in biomolecules, Biomed. Sci.1:245–250, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press

About this chapter

Cite this chapter

Tenforde, T.S. (1996). Biological Interaction of Extremely-Low-Frequency Electromagnetic Fields. In: Ueno, S. (eds) Biological Effects of Magnetic and Electromagnetic Fields. Springer, New York, NY. https://doi.org/10.1007/978-0-585-31661-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-31661-1_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-306-45292-5

  • Online ISBN: 978-0-585-31661-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics