Skip to main content

Real-Time Measurement of Nitric Oxide in Coronary Outflow during Transient Myocardial Ischemia and Reperfusion

  • Chapter
The Ischemic Heart

Abstract

To examine the kinetics and determinants of the production and release of nitric oxide (NO) from a heart during transient myocardial ischemia and reperfusion, we directly measured NO in the coronary efluent from isolated beating rat hearts during reperfusion following transient myocardial ischemia using a newly developed NO microelectrode. Isolated rat hearts were perfused with an oxygenated Krebs-Henseleit buffered solution and were subjected to one-minute or ten-minute global ischemia followed by reperfusion at 100 cmH2O. The time course of measured NO current during reperfusion showed a monophasic pattern in the case of one-minute ischemia but a biphasic pattern in the case of ten-minute ischemia. Immediately after the onset of reperfusion, coronary flow increased almost stepwise after one-minute ischemia and gradually after ten-minute ischemia. After one-minute ischemia? measured NO current first stayed at a relatively low level and then gradually increased (monophasic pattern). After ten-minute ischemia, following a transient peak, the measured NO current gradually increased (biphasic pattern). There was an excellent linear relationship between coronary flow rate and the calculated amount of NO during the second rise of NO release in the case often-minute ischemia. These data suggest that the time course of NO release from a heart during reperfusion is determined by the production of NO during ischemia, which is ischemic-duration dependent, and by the reperfusion-rate dependent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moncada S, Palmer RM, Higgs EA. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Phannacol Rev 43(2):109–142.

    CAS  Google Scholar 

  2. Kelm M, Schrader J. 1990. Control of coronary vascular tone by nitric oxide. Circ Res 66(6):1561–1575.

    PubMed  CAS  Google Scholar 

  3. Hare JM, Colucci WS. 1995. Role of nitric oxide in the regulation of myocardial function. Prog Cardiovasc Dis 38(2):155–166.

    Article  PubMed  CAS  Google Scholar 

  4. Kelly RA, Balligant JL, Smith TW. 1996. Nitric oxide and cardiac function. Circ Res 79(3):363–380.

    PubMed  CAS  Google Scholar 

  5. Node K, Kitakaze M, Kosaka H, Komamura K, Minamino T, Inoue M, Tada M, Hori M, Kamada T. 1996. Increased release of NO during ischemia reduces myocardial contractility and improves metabolic dysfunction. Circulation 93(2):356–364.

    PubMed  CAS  Google Scholar 

  6. Node K, Kitakaze M, Kosaka H, Komamura K, Minamino T, Tada M, Inoue M, Hori M, Kamada T. 1995. Plasma nitric oxide end products are increased in the ischemic canine heart. Biochem Biophys Res Commun 211(2):370–374.

    Article  PubMed  CAS  Google Scholar 

  7. Zweier JL, Wang P, Kuppusamy P. 1995. Direct measurement of nitric oxide generation in the ischemic heart using electron paramagnetic resonance spectroscopy. J Biol Chem 270(1):304–307.

    Article  PubMed  CAS  Google Scholar 

  8. Malinski T, Taha Z. 1992. Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature 358:676–678.

    Article  PubMed  CAS  Google Scholar 

  9. Shibuki K. 1990. An electrochemical microprobe for detecting nitric oxide release in brain tissue. Neurosci Res 9(1):69–76.

    Article  PubMed  CAS  Google Scholar 

  10. Ichimori K, Ishida H, Fukahori M, Nakazawa H, Murakami E. 1994. Practical nitric oxide measurement employing a nitric oxide-selective electrode. Rev Sci Instrum 65(8):2714–2718.

    Article  CAS  Google Scholar 

  11. Tschudi MR, Mesaros S, Luscher TF, Malinski T. 1996. Direct in situ measurement of nitric oxide in mesenteric resistance arteries. Hypertension 27(1):32–35.

    PubMed  CAS  Google Scholar 

  12. Vallance P, Patton S, Bhagat K, MacAllister R, Radomski M, Moncada S, Malinski T. 1995. Direct measurement of nitric oxide in human beings. Lancet 345:153–154.

    Article  Google Scholar 

  13. Mochizuki S, Goto M, Hirano K, Fukuhiro Y, Kajiya F. 1996. Direct measurement of nitric oxide in arterial wall using newly developed nitric oxide microsensor. Biomed Eng 8(4):18–23.

    Google Scholar 

  14. Hecker M, Mulsch A, Bassenge E, Busse R. 1993. Vasoconstriction and increased flow: two principal mechanisms of shear stress-dependent endothelial autacoid release. Am J Physiol 265(3, Pt 2):H828–H833.

    PubMed  CAS  Google Scholar 

  15. Cowan CL, Cohen RA. 1991. Two mechanisms mediate relaxation by bradykinin of pig coronary artery: NO-dependent and independent responses. Am J Physiol 261(3, Pt 2):H830–H835.

    PubMed  CAS  Google Scholar 

  16. Masini E, Bianchi S, Mugnai L, Gambassi F, Lupini M, Pistelli A, Mannaioni PF. 1991. The effect of nitric oxide generators on ischemia reperfusion injury and histamine release in isolated perfused guinea-pig heart. Agents Actions 33(1–2):53–56.

    Article  PubMed  CAS  Google Scholar 

  17. Ungureanu LD, Balligand JL, Kelly RA, Smith TW. 1995. Myocardial contractile dysfunction in the systemic inflammatory response syndrome: role of a cytokine-inducible nitric oxide synthase in cardiac myocytes. J Mol Cell Cardiol 27(1):155–167.

    Google Scholar 

  18. Oddis CV, Finkel MS. 1995. Cytokine-stimulated nitric oxide production inhibits mitochondrial activity in cardiac myocytes. Biochem Biophys Res Commun 213(3):1002–1009.

    Article  PubMed  CAS  Google Scholar 

  19. Kanai AJ, Strauss HC, Truskey GA, Grews AL, Crunfeld S, Malinski T. 1995. Shear stress induces ATP-independent transient nitric oxide release from vascular endothelial cells, measured directly with a porphyrinic microsensor. Circ Res 77(2):284–293.

    PubMed  CAS  Google Scholar 

  20. Korenaga R, Ando J, Tsuboi H, Yang W, Sakuma I, Toyo-oka T, Kamiya A. 1994. Laminar flow stimulates ATP-and shear stress-dependent nitric oxide production in cultured bovine endothelial cells. Biochem Biophys Res Commun 198(1):213–219.

    Article  PubMed  CAS  Google Scholar 

  21. Kuchan MJ, Frangos JA. 1994. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am J Physiol 266(3, Pt 1):C628–C636.

    PubMed  CAS  Google Scholar 

  22. Parratt JR, Vegh A, Papp JG. 1995. Bradykinin as an endogenous myocardial protective substance with particular reference to ischemic preconditioning—a brief review of the evidence. Can J Physiol Pharmacol 73(7):837–842.

    PubMed  CAS  Google Scholar 

  23. Masini E, Giannella E, Bianchi S, Palmerani B, Pistelli A, Mannaioni PF. 1988. Histamine release in acute coronary occlusion—reperfusion in isolated guinea-pig heart. Agents Actions 23(3–4):266–269.

    Article  PubMed  CAS  Google Scholar 

  24. Tani M, Neely JR. 1989. Role of intracellular Na+ in CA2+ overload and depressed recovery of ventricular hnction of reperfused ischemic rat hearts. Possible involvement of H+/Na+ and Na+/ Ca2+ exchange. Circ Res 65(4):1045–1056.

    PubMed  CAS  Google Scholar 

  25. Marban E, Kitakaze M, Chacko VP, Pike MM. 1988. Ca2+ transients in perfused hearts revealed by gated 19F NMR spectroscopy. Circ Res 63(3):673–678.

    PubMed  CAS  Google Scholar 

  26. Fleming I, Busse R. 1995. Control and consequences of endothelial nitric oxide formation. Adv Phamacol 34(187):187–206.

    Article  CAS  Google Scholar 

  27. Busse R, Mulsch A. 1990. Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS Lett 265(1–2):133–136.

    Article  PubMed  CAS  Google Scholar 

  28. Boulanger C, Schini VB, Moncada S, Vanhoutte PM. 1990. Stimulation of cyclic GMP production in cultured endothelial cells of the pig by bradykinin, adenosine diphosphate, calcium ionophore A23187 and nitric oxide. Br J Phamacol 101(1):152–156.

    CAS  Google Scholar 

  29. Heslinga JW, Allaart CP, Westerhof N. 1996. Intramyocardial pressure measurements in the isolated perfused papillary muscle of rat heart. Eur J Morphol 34(1):55–62.

    Article  PubMed  CAS  Google Scholar 

  30. Corson MA, James NL, Lana SE, Nerem RM, Berk BC, Harrison DG. 1996. Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress. Circ Res 79(5):984–991.

    PubMed  CAS  Google Scholar 

  31. Ayajiki K, Kindermann M, Hecker M, Fleming I, Busse R. 1996. Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells. Circ Res 78(5):745–746.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fukuhiro, Y. et al. (1998). Real-Time Measurement of Nitric Oxide in Coronary Outflow during Transient Myocardial Ischemia and Reperfusion. In: Mochizuki, S., Takeda, N., Nagano, M., Dhalla, N.S. (eds) The Ischemic Heart. Progress in Experimental Cardiology, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-39844-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-39844-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8105-1

  • Online ISBN: 978-0-585-39844-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics