Skip to main content

Cluster χ-varieties, amalgamation, and Poisson—Lie groups

  • Chapter
Algebraic Geometry and Number Theory

Part of the book series: Progress in Mathematics ((PM,volume 253))

Abstract

In this paper, starting from a split semisimple real Lie group G with trivial center, we define a family of varieties with additional structures. We describe them as cluster χ-varieties, as defined in [FG2]. In particular they are Poisson varieties. We define canonical Poisson maps of these varieties to the group G equipped with the standard Poisson—Lie structure defined by V. Drinfeld in [D, D1]. One of them maps to the group birationally and thus provides G with canonical rational coordinates.

To Vladimir Drinfeld for his 50th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Berenstein, S. Fomin, and A. Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math., 122-1 (1996), 49–149.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Berenstein, S. Fomin, and A. Zelevinsky, Cluster algebras III: Upper bounds and double Bruhat cells, Duke Math. J., 126-1 (2005), 1–52.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Berenstein and A. Zelevinsky, Totally positivity in Schubert varieties, Comm. Math. Helv., 72 (1997), 1–40.

    Article  MathSciNet  Google Scholar 

  4. A. Berenstein and A. Zelevinsky, Quantum cluster algebras, math.QA/0404446, 2004; Adv. Math., to appear.

    Google Scholar 

  5. V. G. Drinfeld, Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang-Baxter equations, Dokl. Akad. Nauk SSSR, 268-2 (1983), 285–287.

    MathSciNet  Google Scholar 

  6. V. G. Drinfeld, Quantum groups, in Proceedings of the International Congress of Mathematicians, Vols. 1–2, American Mathematical Society, Providence, RI, 1987, 798–820.

    Google Scholar 

  7. S. Fomin and A. Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc., 12-2 (1999), 335–380.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc., 15-2 (2002), 497–529.

    Article  MATH  MathSciNet  Google Scholar 

  9. V. V. Fock and A. B. Goncharov, Moduli spaces of local systems and higher Teichmuller theory, math.AG/0311149, 2003.

    Google Scholar 

  10. V. V. Fock and A. B. Goncharov, Cluster ensembles, quantization and the dilogarithm, math.AG/0311245, 2003.

    Google Scholar 

  11. M. Gekhtman, M. Shapiro, A. Vainshtein, Cluster algebras and Poisson geometry, Moscow Math. J., 3 (2003), 899–934.

    MATH  MathSciNet  Google Scholar 

  12. G. Lusztig, Total positivity in reductive groups, in Lie Theory and Geometry, Progress in Mathematics, Vol. 123, Birkhäuser Boston, Cambridge, MA, 1994, 531–568.

    Google Scholar 

  13. G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc., 3-2 (1990), 447–498.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Fock, V.V., Goncharov, A.B. (2006). Cluster χ-varieties, amalgamation, and Poisson—Lie groups. In: Ginzburg, V. (eds) Algebraic Geometry and Number Theory. Progress in Mathematics, vol 253. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4532-8_2

Download citation

Publish with us

Policies and ethics