Skip to main content

Cancer Clinical Trials with Efficacy and Toxicity Endpoints: A Simulation Study to Compare Two Nonparametric Methods

  • Chapter
Advances in Statistical Methods for the Health Sciences

Part of the book series: Statistics for Industry and Technology ((SIT))

  • 2273 Accesses

Abstract

Few methods for cancer clinical trials have been proposed in the past decade to evaluate treatments on the basis of joint efficacy and toxicity endpoints. The primary goal of a new cancer treatment is to improve efficacy. Because of the antagonist relationship between efficacy and toxicity, a critical question is to achieve this improvement without increasing unacceptably the risk of a severe toxicity. In this paper, two methods due to Letierce et al. (2003) and Tubert-Bitter et al. (2005) are compared in a simulation study. They are both nonparametric and, besides the joint approach of efficacy and toxicity, they consider the cumulative doses at which efficacy and toxicity occur, with the idea that it is better for the patient to attain efficacy at a small dose and to experience toxicity, if it happens, at the highest dose possible. These methods are detailed in the same framework. For the simulation study, the two true correlated doses at which efficacy and toxicity occur are generated from a Clayton model with Weibull marginal distributions. A fixed censoring value is considered, corresponding to the total dose of drug received at the end of the trial by the patients. Treatment groups of size 50 and 100 patients were simulated with 50%, 65%, and 80% of efficacy and 20%, 35%, and 50% of toxicity. Two values for the correlation of the variables were considered. One thousand simulations were run to estimate the type I error rate and the power of the tests. A few features were observed depending on the sample size, the correlation of the variables, and whether the difference between the two simulated treatments concerned efficacy, toxicity, or both.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bloch, D. A., Lai, T. L., and Tubert-Bitter, P. (2001). One-sided tests in clinical trials with multiple endpoints, Biometrics, 57, 1039–1047.

    Article  Google Scholar 

  2. Bloch, D. A., and Silverman, B. W. (1997). Monotone discriminant functions and their applications in rhumatology, Journal of the American Statistical Association, 92, 144–153.

    Article  MATH  Google Scholar 

  3. Dykstra, R., Kochar, S., and Robertson, T. (1995). Inference for likelihood ratio ordering in the two-sample problem, Journal of the American Statistical Association, 90, 1034–1040.

    Article  MATH  Google Scholar 

  4. Efron, B., and Tibshirani, R. J. (1993). An Introduction to the Bootstrap, Chapman & Hall, San Francisco.

    MATH  Google Scholar 

  5. Genest, C., and Mac Kay, J. (1986). The joy of copulas: Bivariate distributions with uniform marginals, The American Statistician, 40, 280–283.

    Article  Google Scholar 

  6. Jennison, C., and Turnbull, B. W. (1993). Group sequential tests for bivariate response: Interim analyses of clinical trials with both efficacy and safety endpoints, Biometrics, 49, 741–752.

    Article  MATH  Google Scholar 

  7. Lehmann, E. (1955). Ordered families of distributions, Annals of Mathematical Statistics, 26, 399–404.

    Google Scholar 

  8. Letierce, A., Tubert-Bitter, P., Maccario, J., and Kramar, A. (2003). Two treatment comparison based on joint toxicity and efficacy ordered alternatives in cancer trials, Statistics in Medicine, 22, 859–868.

    Article  Google Scholar 

  9. Marshall, A. W., and Olkin, I. (1988). Families of multivariate distributions, Journal of the American Statistical Association, 83, 834–841.

    Article  MATH  Google Scholar 

  10. Robertson, T., Wright, F. T., and Dykstra, R. L. (1988). Order-Restricted Statistical Inferences, John Wiley & Sons, New York.

    Google Scholar 

  11. Thall, P., and Cheng, S.-C. (1999). Treatment comparisons based on twodimensional safety and efficacy alternatives in oncology trials, Biometrics, 55, 746–753.

    Article  MATH  Google Scholar 

  12. Tubert-Bitter, P., Bloch, D. A., Letierce, A., and Kramar, A. (2005). A nonparametric comparison of the effectiveness of treatments: A multivariate toxicity-penalized approach, Journal of Biopharmaceutical Statistics, 15, 129–142.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Boston

About this chapter

Cite this chapter

Letierce, A., Tubert-Bitter, P. (2007). Cancer Clinical Trials with Efficacy and Toxicity Endpoints: A Simulation Study to Compare Two Nonparametric Methods. In: Auget, JL., Balakrishnan, N., Mesbah, M., Molenberghs, G. (eds) Advances in Statistical Methods for the Health Sciences. Statistics for Industry and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4542-7_22

Download citation

Publish with us

Policies and ethics