Skip to main content

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

There exists an elegant correspondence between the problem of reconstructing a 0-1 lattice image from two of its projections and the problem of finding a maximum flow in a certain graph. In this chapter we describe how network flow algorithms can be used to solve a variety of problems from discrete tomography. First, we describe the network flow approach for two projections and several of its generalizations. Subsequently, we present an algorithm for reconstructing 0-1 images from more than two projections. The approach is extended to the reconstruction of 3D images and images that do not have an intrinsic lattice structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and Applications. Prentice-Hall, Englewood Cliffs, NJ (1993).

    Google Scholar 

  2. Anstee, R.P.: The network flows approach for matrices with given row and column sums. Discr. Math., 44, 125–138 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  3. Batenburg, K.J.: Reconstructing binary images from discrete X-rays. Tech. Rep. PNA-E0418, CWI, Amsterdam, The Netherlands (2004).

    Google Scholar 

  4. Bertsekas, D.P., Tseng, P.: RELAX-IV: A faster version of the RELAX code for solving minimum cost flow problems. LIDS Technical Report LIDS-P-2276, MIT, Cambridge, MA (1994).

    Google Scholar 

  5. Dürr, C.: Ryser’s algorithm can be implemented in linear time. http://www.lix.polytechnique.fr/~durr/Xray/Ryser/.

  6. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math., 8, 399–404 (1956).

    MATH  MathSciNet  Google Scholar 

  7. Gale, D.: A theorem on flows in networks. Pac. J. Math., 7, 1073–1082 (1957).

    MATH  MathSciNet  Google Scholar 

  8. Gardner, R.J., Gritzmann, P., Prangenberg, D.: On the computational complexity of reconstructing lattice sets from their X-rays. Discr. Math., 202, 45–71 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  9. Goldberg, A.V.: An efficient implementation of a scaling minimum-cost flow algorithm. J. Algebra, 22, 1–29 (1997).

    Google Scholar 

  10. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM, 45, 783–797 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  11. Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by successive approximation. Math. Oper. Res., 15, 430–466 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  12. Gritzmann, P., de Vries, S., Wiegelmann, M.: Approximating binary images from discrete X-rays. SIAM J. Opt., 11, 522–546, (2000).

    Article  MATH  Google Scholar 

  13. Hajdu, L., Tijdeman, R.: Algebraic aspects of discrete tomography. J. Reine Angew. Math., 534, 119–128 (2001).

    MATH  MathSciNet  Google Scholar 

  14. Herman, G.T., Kuba, A.: Discrete tomography in medical imaging. Proc. IEEE, 91, 380–385 (2003).

    Article  Google Scholar 

  15. Jinschek, J.R., Calderon, H.A., Batenburg, K.J., Radmilovic, V., Kisielowski, C.: Discrete tomography of Ga and InGa particles from HREM image simulation and exit wave reconstruction. Mat. Res. Soc. Symp. Proc., 839, 4.5.1–4.5.6 (2004).

    Google Scholar 

  16. Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. SIAM, Philadelphia, PA (2001).

    Google Scholar 

  17. Mohammad-Djafari, A.: Binary polygonal shape image reconstruction from a small number of projections. ELEKTRIK, 5, 127–139 (1997).

    Google Scholar 

  18. Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Can. J. Math., 9, 371–377 (1957).

    MATH  MathSciNet  Google Scholar 

  19. Ryser, H.: Combinatorial Mathematics, Mathematical Association of America, Washington, DC (1963).

    MATH  Google Scholar 

  20. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Heidelberg, Germany (2003).

    MATH  Google Scholar 

  21. Slump, C.H., Gerbrands, J.J.: A network flow approach to reconstruction of the left ventricle from two projections. Comp. Graph. Image Proc., 18, 18–36 (1982).

    Article  Google Scholar 

  22. Tanabe, K.: Projection method for solving a singular system. Num. Math., 17, 203–214 (1971).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Boston

About this chapter

Cite this chapter

Batenburg, K. (2007). Network Flow Algorithms for Discrete Tomography. In: Herman, G.T., Kuba, A. (eds) Advances in Discrete Tomography and Its Applications. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4543-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-4543-4_9

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-3614-2

  • Online ISBN: 978-0-8176-4543-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics