Skip to main content

Euler Systems

  • Chapter
  • First Online:
The Grothendieck Festschrift

Part of the book series: Modern Birkhäuser Classics ((MBC))

Abstract

In this paper we study Euler systems defined by the characterizing condition AX1, perhaps with the addition of other conditions (AX2 and AX3 systems, see §1). Our main purpose is to apply them to determine the structure of the class groups of certain algebraic number fields R, and the Mordell-Weil groups and Shafarevich-Tate groups of Weil curves. In the case of the class group Cl of a field R, Theorem 7 of §2 says that, if the Galois group G of R is annihilated by l − 1, where l is a rational prime, and if ψ is a homomorphism from G to the group of (l — l)-th roots of unity in Z l, then (under certain conditions on R and ψ) any Euler system associated to R which is non-degenerate (in its (l, ψ)-component) determines the structure of the ψ-component of ClZ l, i.e., it determines the set of integers n i, n in i+1, such that \( (Cl \otimes Z_l )_\psi \simeq \sum\nolimits_{i = 1}^{i_0 } {Z/l^{n,} } \) as an abelian group. Theorem 7 also shows how the Euler system determines bases of (ClZ l)ψ consisting of prime divisor classes, the expansions of certain prime divisor classes in these bases, and also certain representations of primary numbers. For example, this holds for the cyclotomic field K l = Ql) (see below) with odd characters ψ and the system of Gauss sums, or with even characters ψ and the system of cyclotomic units. As a corollary we find that the order of X = (ClZ l)ψ is bounded from above by the predicted explicit order [X]?; and this, along with formulas for the class number, enables us in several cases (cyclotomic fields, fields which are abelian extensions of an imaginary quadratic field) to prove that [X] and [X]? are equal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. I. Borevich, I. R. Shafarevich, Number Theory, Academic Press, 1966.

    Google Scholar 

  2. K. Ribet, “A modular construction of unramified p-extensions of Q(μ p)”, Invent. Math., 34 (1976), 151–162.

    Article  MathSciNet  Google Scholar 

  3. A. Wiles, “Modular curves and the class group of QP)”, Invent. Math., 58 (1980), 1–35.

    Article  MathSciNet  Google Scholar 

  4. B. Mazur, A. Wiles, “Class fields of abelian extensions of Q”, Invent. Math., 76 (1984), 179–330.

    Article  MathSciNet  Google Scholar 

  5. A. Wiles, “On p-adic representations for totally real fields”, Ann. Math., 123 (1986), No. 3, 407–456.

    Article  MathSciNet  Google Scholar 

  6. F. Thaine, “On the ideal class groups of real abelian number fields”, to appear in Ann. of Math.

    Google Scholar 

  7. K. Rubin, “Global units and ideal class groups”, Invent. Math., 89 (1987), 511–526.

    Article  MathSciNet  Google Scholar 

  8. K. Rubin, “Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication”, Invent. Math., 89 (1987), 527–560.

    Article  MathSciNet  Google Scholar 

  9. J. Coates, A. Wiles, “On the conjecture of Birch and Swinnerton-Dyer”, Invent. Math., 39 (1977), 223–251.

    Article  MathSciNet  Google Scholar 

  10. B. H. Gross, D. B. Zagier, “Heegner points and derivatives of L-series”, Invent. Math., 84 (1986), 225–320.

    Article  MathSciNet  Google Scholar 

  11. V. A. Kolyvagin, “Finiteness of E(Q) and III(E, Q) for a subclass of Weil curves”, Izvestiya AN SSSR, Ser. Mat., 52 (1988), No. 3, 522–540.

    MathSciNet  Google Scholar 

  12. V. A. Kolyvagin, “On the Mordell-Weil group and the Shafarevich-Tate group of Weil elliptic curves”, Izvestiya AN SSSR, Ser. Mat., 52 (1988), No. 6.

    MATH  Google Scholar 

  13. D. B. Zagier, “Modular points, modular curves, modular surfaces and modular forms”, in Arbeitstagung Bonn 1984, Springer Lecture Notes in Math., 1111 (1985), 225–248.

    Article  MathSciNet  Google Scholar 

  14. G. Stevens, Arithmetic on Modular Curves, Birkhäuser, 1982.

    Google Scholar 

  15. B. Mazur, H. Swinnerton-Dyer, “Arithmetic of Weil curves”, Invent. Math., 25 (1974), 1–61.

    Article  MathSciNet  Google Scholar 

  16. B. Perrin-Riou, “Points de Heegner et derivées de fonctions L p-adiques”, Invent. Math., 89 (1987), 455–510.

    Article  MathSciNet  Google Scholar 

  17. S. Lang, Elliptic Functions, Addison-Wesley, 1973.

    Google Scholar 

  18. K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, 1982.

    Google Scholar 

  19. M. I. Bashmakov, “The cohomology of abelian varieties over a number field”, Uspekhi Mat. Nauk, 27 (1972), No. 6, 25–66 [English translation: Russian Math. Surveys, 27 (1972), No. 6, 25–70].

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to A. Grothendieck on his 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Boston

About this chapter

Cite this chapter

Kolyvagin, V.A. (2007). Euler Systems. In: Cartier, P., Katz, N.M., Manin, Y.I., Illusie, L., Laumon, G., Ribet, K.A. (eds) The Grothendieck Festschrift. Modern Birkhäuser Classics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-4575-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-4575-5_11

  • Published:

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-4567-0

  • Online ISBN: 978-0-8176-4575-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics