Skip to main content

Inference of Protein Function from the Structure of Interaction Networks

  • Chapter
  • First Online:
Structural Analysis of Complex Networks

Abstract

We consider the problem of using graph-theoretical techniques to predict the function of unannotated proteins in an organism’s proteome. Specifically, we present an overview of the major methods for predicting protein function based on interaction network structure and describe an abstract framework within which these methods can be treated in a unified fashion. We also present a comparison of the proposed methods and highlight some open theoretical and practical questions in the area.

MSC2000: Primary 46N60; Secondary 05C85, 05C90

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul SF et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Google Scholar 

  2. Altschul SF et al (1997) Gap-blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  Google Scholar 

  3. Ashburner M et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25: 25–29

    Article  Google Scholar 

  4. Baldi P, Hatfield GW (2002) DNA microarrays and gene expression. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Barabasi L, Oltvai Z (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  Google Scholar 

  6. Breitkreutz BJ et al (2003) The GRID: the general repository for interaction datasets. Genome Biol 4:R23

    Article  Google Scholar 

  7. Brun C et al (2003) Functional classification of proteins for the prediction of cellular function from a protein–protein interaction network. Genome Biol 5:R6

    Article  MathSciNet  Google Scholar 

  8. Bu D et al (2003) Topological structure analysis of the protein–protein interaction network in budding yeast. Nucleic Acids Res 31(9):2443–2450

    Article  MathSciNet  Google Scholar 

  9. Chua H, Sung W, Wong L (2006) Exploiting indirect neighbours and topological weight to predict protein function from protein–protein interactions. Bioinformatics 22(13):1623–1630

    Article  Google Scholar 

  10. Costanzo M et al (2001) YPD, PombePD and WormPD: model organism volumes of the bioknowledge library, an integrated resource for protein information. Nucleic Acids Res 29(1):75–79

    Article  Google Scholar 

  11. Deng M et al (2003) Prediction of protein function using protein–protein interaction data. J Comput Biol 10(6):947–960

    Article  Google Scholar 

  12. Diestel R (2000) Graph theory. Springer, Berlin

    Google Scholar 

  13. Fawcett T (2005) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874

    Article  Google Scholar 

  14. Gavin A et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    Article  Google Scholar 

  15. Giot L et al (2003) A protein interaction map of Drosophilamelanogaster. Science 302: 1727–1736

    Article  Google Scholar 

  16. Hishigaki H et al (2001) Assessment of prediction accuracy of protein function from protein–protein interaction data. Yeast 18:523–531

    Article  Google Scholar 

  17. Ito T et al (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98(8):4569–4574

    Article  Google Scholar 

  18. Jacq B (2001) Protein function from the perspective of molecular interactions and genetic networks. Brief Bioinform 2(1):38–50

    Article  Google Scholar 

  19. Jeong H, Mason S, Barabasi A, Oltvai Z (2001) Lethality and centrality in protein networks. Nature 411:41–42

    Article  Google Scholar 

  20. Karaoz U et al (2004) Whole-genome annotation by using evidence integration in functional-linkage networks. Proc Natl Acad Sci USA 101:2888–2893

    Article  Google Scholar 

  21. Karp P et al (2002) The ecoCyc database. Nucleic Acids Res 30(1):56–58

    Article  Google Scholar 

  22. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  Google Scholar 

  23. Letovsky S, Kasif S (2003) Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics 19:i197–i204

    Article  Google Scholar 

  24. Li S et al (2004) A map of the interactome network of the metazoan C. elegans. Science 303:540–543

    Google Scholar 

  25. Mason O, Verwoerd M (2007) Graph theory and networks in biology. IET Syst Biol 1(2): 89–119

    Article  Google Scholar 

  26. Mewes H et al (2002) MIPS: a database for genomes and protein sequences. Nucleic Acids Res 30(1):31–34

    Article  Google Scholar 

  27. Nabieva E et al (2005) Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21:i302–i310

    Article  Google Scholar 

  28. Pellegrini M et al (1999) Assigning protein function by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci USA 96(8):4285–4288

    Article  Google Scholar 

  29. Pereira-Leal J, Enright A, Ouzounis C (2004) Detection of functional modules from protein interaction networks. Protein Struct Funct Bioinform 54:49–57

    Article  Google Scholar 

  30. Przulj N, Wigle D, Jurisica I (2004) Functional topology in a network of protein interactions. Bioinformatics 20(3):340–348

    Article  Google Scholar 

  31. Rain J et al (2001) The protein–protein interaction map of Heliobacter pylori. Nature 409: 211–215

    Article  Google Scholar 

  32. Ruepp A et al (2004) The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res 32(18):5539–5545

    Article  Google Scholar 

  33. Samanta M, Liang S (2003) Predicting protein functions from redundancies in large-scale protein interaction networks. Proc Natl Acad Sci USA 100(22):12579–12583

    Article  Google Scholar 

  34. Schwikowski B, Uetz P, Fields S (2000) A network of protein–protein interactions in yeast. Nat Biotechnol 18:1257–1261

    Article  Google Scholar 

  35. Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein function. Mol Syst Biol, 3:88

    Article  Google Scholar 

  36. Sontag E (2004) Some new directions in control theory inspired by systems biology. IET Syst Biol 1:9–18

    Google Scholar 

  37. Twyman RM (2004) Principles of proteomics. Garland Science/BIOS Scientific Publishers (Advanced Text Series), Taylor and Francis, London

    Google Scholar 

  38. Vazquez A et al (2003) Global protein function prediction from protein–protein interaction networks. Nat Biotechnol 21(6):697–700

    Article  Google Scholar 

  39. Venter C et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  Google Scholar 

  40. Von Mering C et al (2002) Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417:399–403

    Article  Google Scholar 

  41. Xenarios I et al (2000) DIP: the database of interacting proteins. Nucleic Acids Res 28(1): 289–291

    Article  Google Scholar 

  42. Yu H et al (2004) Genomic analysis of essentiality within protein networks. Trends Genet 20(6):227–231

    Article  Google Scholar 

  43. Zhou X, Kao M, Wong W (2002) Transitive functional annotation by shortest-path analysis of gene expression data. Proc Natl Acad Sci USA 99(20):1278312788

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by Science Foundation Ireland (SFI) grant 03/RP1/I382 and the Irish Higher Education Authority (HEA) PRTLI Network Mathematics grant. Neither Science Foundation Ireland nor the Higher Education Authority is responsible for any use of data appearing in this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Mason .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mason, O., Verwoerd, M., Clifford, P. (2011). Inference of Protein Function from the Structure of Interaction Networks. In: Dehmer, M. (eds) Structural Analysis of Complex Networks. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4789-6_18

Download citation

Publish with us

Policies and ethics