Skip to main content

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 4271 Accesses

Abstract

This chapter consists of a variety of topics in geometry. The approach to geometry that is taken in this chapter and throughout this book is one in which the objects of interest are described as being embedded1 in Euclidean space. There are two natural ways to describe such embedded objects: (1) parametrically and (2) implicitly. The vector-valued functions x = x(t) and x = x(u, v) are respectively parametric descriptions of curves and surfaces when \(X \varepsilon\mathbb{R}^3\). For example, \(x(\Psi ) = [\cos \Psi , \sin \Psi , 0]^T\) for ψ ∈ [0, 2π) is a parametric description of a unit circle in \(\mathbb{R}^3\), and \(x(\phi ,\theta ) = [\cos \phi \sin {\rm \theta },\sin \phi \sin \theta {\rm ,}\cos {\rm \theta }]^T\) for φ ∈ [0, 2π) and θ ∈ [0, π] is a parametric description of a unit sphere in \(\mathbb{R}^3\). Parametric descriptions are not unique. For example, \(x(t) = [{\rm 2t/(1 + t}^{\rm 2} {\rm ), (1 } - {\rm t}^{\rm 2} {\rm )/(1 + t}^{\rm 2} {\rm ), 0]}^{\rm T}\) for \(t \varepsilon\mathbb{R}\) describes the same unit circle as the one mentioned above.2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abhyankar, S.S., Algebraic Geometry for Scientists and Engineers, Mathematical Surveys and Monographs, 35, American Mathematical Society, Providence, RI, 1990.

    Google Scholar 

  2. Adams, C.C., The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, W.H. Freeman, New York, 1994.

    MATH  Google Scholar 

  3. Bates, P.W., Wei, G.W., Zhao, S., “Minimal molecular surfaces and their applications,” J. Comput. Chem., 29, pp. 380–391, 2008.

    Article  Google Scholar 

  4. Ben-Israel, A., Greville, T.N.E., Generalized Inverses: Theory and Applications, 2nd ed., Canadian Mathematical Society Books in Mathematics, Springer, New York, 2003.

    MATH  Google Scholar 

  5. Bishop, R., “There is more than one way to frame a curve,” Amer. Math. Month., 82, pp. 246–251, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  6. Blackmore, D., Leu, M.C., Wang, L.P., “The sweep-envelope differential equation algorithm and its application to NC machining verification,” Computer-Aided Design, 29, pp. 629–637, 1997.

    Article  Google Scholar 

  7. Bloomenthal, J., (ed.), Introduction to Implicit Surfaces, Morgan Kaufmann, San Francisco, 1997.

    MATH  Google Scholar 

  8. Bloomenthal, J., Shoemake, K., “Convolution surfaces,” Computer Graphics, 25, pp. 251–256, 1991 (Proc. SIGGRAPH'91).

    Article  Google Scholar 

  9. Bottema, O., Roth, B., Theoretical Kinematics, Dover, New York, 1990.

    MATH  Google Scholar 

  10. Brakke, K.A., The Motion of a Surface by its Mean Curvature, Princeton University Press, Princeton, NJ, 1978.

    MATH  Google Scholar 

  11. Buttazzo, G., Visintin, A., eds.,Motion by Mean Curvature and Related Topics, Proceedings of the international conference held at Trento, July 20–24, 1992. de Gruyter, Berlin, 1994.

    Google Scholar 

  12. Chan, T.F., Vese, L.A., “Active contours without edges,” IEEE Trans. Image Process., 10, pp. 266–277, 2001.

    Article  MATH  Google Scholar 

  13. Chazvini, M., “Reducing the inverse kinematics of manipulators to the solution of a generalized eigenproblem,” Computational Kinematics, pp. 15–26, 1993.

    Google Scholar 

  14. Chen, B.-Y., Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapore, 1984.

    MATH  Google Scholar 

  15. Chen, B.-Y., “On the total curvature of immersed manifolds,” Amer. J. Math., 93, pp. 148–162, 1971; 94, pp. 899–907, 1972; 95, pp. 636–642, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  16. Chen, B.-Y., “On an inequality of mean curvature,” J. London Math. Soc., 4, pp. 647–650, 1972.

    Article  MathSciNet  Google Scholar 

  17. Chirikjian, G.S., “Closed-form primitives for generating locally volume preserving deformations,” ASME J. Mech. Des., 117, pp. 347–354, 1995.

    Article  Google Scholar 

  18. Chopp, D.L., “Computing minimal surfaces via level set curvature flow,” J. Comput. Phys., 106, pp. 77–91, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  19. do Carmo, M., Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, NJ, 1976.

    MATH  Google Scholar 

  20. Dombrowski, P., “Krummungsgrossen gleichungsdefinierter Untermannigfaltigkeiten Riemannscher Mannigfaltigkeiten,” Math. Nachr., 38, pp. 133–180, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  21. Evans, L.C., Spruck, J., “Motion of level sets by mean curvature,” J. Diff. Geom., 33, pp. 635–681, 1991.

    MATH  MathSciNet  Google Scholar 

  22. Evans, L.C., Spruck, J., “Motion of level sets by mean curvature II,” Trans. Amer. Math. Soc., 330, pp. 321–332, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  23. Farouki, R.T., Neff, C.A., “Analytical properties of plane offset curves,” Computer Aided Geometric Design, 7, pp. 83–99, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  24. Farouki, R.T., Neff, C.A., “Algebraic properties of plane offset curves,” Computer Aided Geometric Design, 7, pp. 101–127, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  25. Fary, I., “Sur la courbure totale d'une courbe gauche faisant un noeud,” Bull. Soc. Math. Fr., 77, pp. 128–138, 1949.

    MATH  MathSciNet  Google Scholar 

  26. Faugeras, O., Keriven, R., “Variational principles, surface evolution, PDE's, level set methods and the stereo problem,” IEEE Trans. Image Process., 7, pp. 336–344, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  27. Fenchel, W., “Uber Krümmung und Windung geschlossenen Raumkurven,” Math. Ann., 101, pp. 238–252, 1929.

    Article  MATH  MathSciNet  Google Scholar 

  28. Fox, R.H., “On the total curvature of some tame knots,” Ann. Math., 52, pp. 258–261, 1950.

    Article  Google Scholar 

  29. Gage, M., Hamilton, R.S., “The heat equation shrinking convex plane curves,” J. Diff. Geom., 23, pp. 69–96, 1986.

    MATH  MathSciNet  Google Scholar 

  30. Goldman, R., “Curvature formulas for implicit curves and surfaces,” Computer Aided Geometric Design, 22, pp. 632–658, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  31. Gray, A., Abbena, E., Salamon, S., Modern Differential Geometry of Curves and Surfaces with MATHEMATICA, Chapman & Hall/CRC, Boca Raton, FL, 2006.

    MATH  Google Scholar 

  32. Gray, A., Tubes, 2nd ed., Birkhäuser, Boston, 2004.

    Google Scholar 

  33. Grayson, M., “The heat equation shrinks embedded plane curves to round points,” J. Diff. Geom., 26, pp. 285–314, 1987.

    MATH  MathSciNet  Google Scholar 

  34. Grayson, M., “A short note on the evolution of a surface by its mean curvature,” Duke Math. J., 58, pp. 555–558, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  35. Gromoll, D., Klingenberg, W., Meyer, W., Riemannsche Geometric im Grossen. Lecture Notes in Mathematics, Vol. 55. Springer, Berlin, 1975.

    Google Scholar 

  36. Guggenheimer, H.W., Differential Geometry, Dover, New York, 1977.

    MATH  Google Scholar 

  37. Hadwiger, H., Altes und Neues über Konvexe Körper, Birkhäuser Verlag, Basel, 1955.

    MATH  Google Scholar 

  38. Hodge, W.V.D., Pedoe, D., Methods of Algebraic Geometry, Vols. 1–3, Cambridge University Press, London, 1952, (reissued 1994).

    MATH  Google Scholar 

  39. Huisken, G., “Flow by mean curvature of convex surfaces into spheres,” J. Diff. Geom., 20, p. 237, 1984.

    MATH  MathSciNet  Google Scholar 

  40. Juan, O., Keriven, R., Postelnicu, G., “Stochastic motion and the level set method in computer vision: Stochastic active contours,” Int. J. Comput. Vision, 69, pp. 7–25, 2006.

    Article  Google Scholar 

  41. Kass, M., Witkin, A., Terzopoulos, D., “Snakes: Active contour models,” Int. J. Comput. Vision, 1, pp. 321–331, 1988.

    Article  Google Scholar 

  42. Katsoulakis, M.A., Kho, A.T., “Stochastic curvature flows: Asymptotic derivation, level set formulation and numerical experiments,” J. Interfaces Free Boundaries, 3, pp. 265–290, 2001.

    MATH  MathSciNet  Google Scholar 

  43. Kimmel, R., Bruckstein, A.M., “Shape offsets via level sets,” Computer-Aided Design, 25, pp. 154–162, 1993.

    Article  MATH  Google Scholar 

  44. Kohli, D., Osvatic, M., “Inverse kinematics of the general 6R and 5R; P serial manipulators,” ASME J. Mech. Des., 115, pp. 922–931, 1993.

    Article  Google Scholar 

  45. Kuiper, N.H., Meeks, W.H., “The total curvature of a knotted torus,” J. Diff. Geom., 26, pp. 371–384, 1987.

    MATH  MathSciNet  Google Scholar 

  46. Langevin, R., Rosenburg, H., “On curvature integrals and knots,” Topology, 15, pp. 405–416, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  47. Lipschutz, M.M., Differential Geometry, Schaum's Outline Series, McGraw-Hill, New York, 1969.

    MATH  Google Scholar 

  48. Manocha, D., Canny, J., “Efficient inverse kinematics for general 6R manipulators,” IEEE Trans. Robot. Automat., 10, pp. 648–657, 1994.

    Article  Google Scholar 

  49. Millman, R.S., Parker, G.D., Elements of Differential Geometry, Prentice-Hall, Englewood Cliffs, NJ, 1977.

    MATH  Google Scholar 

  50. Milnor, J., “On the total curvature of knots,” Ann. Math., 52, pp. 248–257, 1950.

    Article  MathSciNet  Google Scholar 

  51. Mumford, D., Shah, J., “Optimal approximations by piecewise smooth functions and associated variational problems,” Commun. Pure Appl. Math., 42, p. 577, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  52. Olver, P.J., Classical Invariant Theory, Cambridge University Press, London, 1999.

    MATH  Google Scholar 

  53. Oprea, J., Differential Geometry and Its Applications, 2nd ed., The Mathematical Association of America, Washington, DC, 2007.

    MATH  Google Scholar 

  54. Osher, S., Sethian, J.A., “Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations,” J. Comput. Phys., 79, pp. 12–49, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  55. Osher, S.J., Fedkiw, R.P., Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, New York, 2002.

    Google Scholar 

  56. Osserman, R., “Curvature in the eighties,” Amer. Math. Month., 97, pp. 731–756, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  57. Pham, B., “Offset curves and surfaces: A brief survey,” Computer-Aided Design, 24, pp. 223–229, 1992.

    Article  Google Scholar 

  58. Raghavan, M., Roth, B., “Inverse kinematics of the general 6R manipulator and related linkages,” ASME J. Mech. Des., 115, pp. 502–508, 1993.

    Article  Google Scholar 

  59. Rolfsen, D., Knots and Links, Publish or Perish Press, Wilmington, DE, 1976.

    MATH  Google Scholar 

  60. Ros, A., “Compact surfaces with constant scalar curvature and a congruence theorem,” J. Diff. Geom., 27, pp. 215–220, 1988.

    MATH  MathSciNet  Google Scholar 

  61. San Jose Estepar, R., Haker, S., Westin, C.F., “Riemannian mean curvature flow,” in Lecture Notes in Computer Science: ISVC05, 3804, pp. 613–620, Springer, 2005.

    Google Scholar 

  62. Schubert, H., “Über eine Numeriche Knoteninvariante,” Math. Z., 61, pp. 245–288, 1954.

    Article  MATH  MathSciNet  Google Scholar 

  63. Sethian, J.A., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics. Computer Vision, and Materials Science, 2nd ed., Cambridge University Press, London, 1999.

    MATH  Google Scholar 

  64. Shiohama, K., Takagi, R., “A characterization of a standard torus in E 3,” J. Diff. Geom., 4, pp. 477–485, 1970.

    MATH  MathSciNet  Google Scholar 

  65. Sommese, A.J., Wampler, C.W., The Numerical Solution of Systems of Polynomials Arising in Engineering and Science, World Scientific, Singapore, 2005.

    MATH  Google Scholar 

  66. Soner, H.M., Touzi, N., “A stochastic representation for mean curvature type geometric flows,” Ann. Prob., 31, pp. 1145–1165, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  67. Sullivan, J.M., “Curvatures of smooth and discrete surfaces,” in Discrete Differential Geometry, A.I. Bobenko, P. Schröder, J.M. Sullivan, and G.M. Ziegler, eds., Oberwolfach Seminars, Vol. 38, pp. 175–188, Birkhäuser, Basel, 2008.

    Chapter  Google Scholar 

  68. Voss, K., “Eine Bemerkung über die Totalkrümmung geschlossener Raumkurven,” Arch. Math., 6, pp. 259–263, 1955.

    Article  MATH  MathSciNet  Google Scholar 

  69. Weyl, H., “On the volume of tubes,” Amer. J. Math., 61, pp. 461–472, 1939.

    Article  MathSciNet  Google Scholar 

  70. Willmore, T.J., “Mean curvature of Riemannian immersions,” J. London Math. Soc., 3, pp. 307–310, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  71. Willmore, T.J., “Tight immersions and total absolute curvature,” Bull. London Math. Soc., 3, pp. 129–151, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  72. Yip, N.K., “Stochastic motion by mean curvature,” Arch. Rational Mech. Anal., 144, pp. 331–355, 1998.

    Article  MathSciNet  Google Scholar 

  73. Zhang, S., Younes, L., Zweck, J., Ratnanather, J.T., “Diffeomorphic surface flow: A novel method of surface evolution,” SIAM J. Appl. Math., 68, pp. 806–824, 2008.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Chirikjian .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Boston

About this chapter

Cite this chapter

Chirikjian, G.S. (2009). Geometry of Curves and Surfaces. In: Stochastic Models, Information Theory, and Lie Groups, Volume 1. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4803-9_5

Download citation

Publish with us

Policies and ethics