Skip to main content

Towards Quantum Cohomology of Real Varieties

  • Chapter
Arithmetic and Geometry Around Quantization

Part of the book series: Progress in Mathematics ((PM,volume 279))

Summary

This chapter is devoted to a discussion of Gromov–Witten–Welschinger (GWW) classes and their applications. In particular, Horava’s definition of quantum cohomology of real algebraic varieties is revisited by using GWW classes and is introduced as a differential graded operad. In light of this definition, we speculate about mirror symmetry for real varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Bredon, Equivariant Cohomology Theories. Lecture Notes in Mathematics 34, Springer Verlag, Berlin, 1967.

    Google Scholar 

  2. Ö. Ceyhan, On moduli of pointed real curves of genus zero. Proceedings 13th Gokova Geometry Topology Conference 2006, 1–38.

    Google Scholar 

  3. Ö. Ceyhan, On moduli of pointed real curves of genus zero. Ph.D. Thesis. IRMA Preprints. Ref: 06019.

    Google Scholar 

  4. Ö. Ceyhan, The graph homology of the moduli space of pointed real curves of genus zero. Selecta Math. 13 (2007), no. 2, 203–237.

    Google Scholar 

  5. Ö. Ceyhan, On Solomon’s reconstruction theorem for Gromov-Witten-Welshinger classes. in preperation.

    Google Scholar 

  6. M. Davis, T. Januszkiewicz, R. Scott, Fundamental groups of blow-ups. Adv. Math. 177 (2003), no. 1, 115–179.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Degtyarev, I. Itenberg, V. Kharlamov, Real enriques surfaces, Lecture Notes in Mathmetics 1746, Springer-Verlag, Berlin, 2000. xvi+259 pp.

    Google Scholar 

  8. S.L. Devadoss, Tessellations of moduli spaces and the mosaic operad. in ‘Homotopy invariant algebraic structures’ (Baltimore, MD, 1998), 91–114, Contemp. Math., 239, Amer. Math. Soc., Providence, RI, 1999.

    Google Scholar 

  9. I. Dolgachev, Topics in Classical Algebraic Geometry. Part I. lecture notes, available authors webpage http://www.math.lsa.umich.edu/idolga/topics1.pdf

  10. P. Etingof, A. Henriques, J. Kamnitzer, E. Rains, The cohomology ring of the real locus of the moduli space of stable curves of genus 0 with marked points. preprint math.AT/0507514.

    Google Scholar 

  11. K. Fukaya, Y.G. Oh, H. Ohta, K. Ono, Lagrangian intersection Floer theory: anomaly and obstruction. preprint 2000.

    Google Scholar 

  12. P. Griffiths, J. Harris, Principles of algebraic geometry. Pure and Applied Mathematics. Wiley-Interscience [John Wiley and Sons], New York, (1978). xii+813 pp.

    Google Scholar 

  13. A.B. Goncharov, Yu.I. Manin, Multiple ζ-motives and moduli spaces \({\overline{M}}_{0,n}(\mathbb{C})\). Compos. Math. 140 (2004), no. 1, 1–14.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Harris, I. Morrison, Moduli of curves. Graduate Texts in Mathematics vol 187, Springer-Verlag, NewYork, (1998), 366 pp.

    Google Scholar 

  15. A. Henriques, J. Kamnitzer, Crystals and coboundary categories. Duke Math. J. 132 (2006), no. 2, 191–216.

    Article  MATH  MathSciNet  Google Scholar 

  16. P. Horava, Equivariant topological sigma models. Nuclear Phys. B 418 (1994), no. 3, 571–602.

    Article  MATH  MathSciNet  Google Scholar 

  17. I. Itenberg, V. Kharlamov, E. Shustin, A Caporaso-Harris type formula for Welschinger invariants of real toric Del Pezzo surfaces. preprint math/0608549.

    Google Scholar 

  18. H. Kajiura, J. Stasheff, Jim Homotopy algebras inspired by classical open-closed string field theory. Comm. Math. Phys. 263 (2006), no. 3, 553–581.

    Article  MATH  MathSciNet  Google Scholar 

  19. H. Kajiura, J. Stasheff, Open-closed homotopy algebra in mathematical physics. J. Math. Phys. 47 (2006), no. 2, 023506, 28 pp.

    Google Scholar 

  20. H. Kajiura, J. Stasheff, Homotopy algebra of open-closed strings. hep-th/ 0606283.

    Google Scholar 

  21. M. Kapranov, The permutoassociahedron, MacLane’s coherence theorem and asymptotic zones for KZ equation. J. Pure Appl. Algebra 85 (1993), no. 2, 119–142.

    Article  MATH  MathSciNet  Google Scholar 

  22. S. Keel, Intersection theory of moduli space of stable N-pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), no. 2, 545–574.

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Kontsevich, it Homological algebra of mirror symmetry. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), 120–139, Birkhäuser, Basel, 1995.

    Google Scholar 

  24. M. Kontsevich, Yu.- I. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry. Comm. Math. Phys. 164 (1994), no. 3, 525–562.

    Google Scholar 

  25. M. Kontsevich, Yu.-I. Manin (with appendix by R. Kaufmann), Quantum cohomology of a product. Invent. Math. 124 (1996), no. 1–3, 313–339.

    Google Scholar 

  26. F.F. Knudsen, The projectivity of the moduli space of stable curves. II. The stacks M g,n. Math. Scand. 52 (1983), no. 2, 161–199.

    Google Scholar 

  27. C.C.M. Liu, Moduli J-holomorphic curves with Lagrangian boundary conditions and open Gromov-Witten invariants for an S 1 -equivariant pair. preprint math.SG/0210257.

    Google Scholar 

  28. Yu.-I. Manin, Frobenius manifolds, quantum cohomology and moduli spaces. AMS Colloquium Publications vol 47, Providence, RI, (1999), 303 pp.

    Google Scholar 

  29. Yu.-I. Manin, Gauge Field Theories and Complex Geometry. Grundlehren der Mathematischen Wissenschaften 289, Springer-Verlag, Berlin, (1997), 346 pp.

    Google Scholar 

  30. S. A. Merkulov, Operad of formal homogeneous spaces and Bernoulli numbers. math/0708.0891.

    Google Scholar 

  31. G. Mikhalkin, Counting curves via lattice paths in polygons. C. R. Math. Acad. Sci. Paris 336 (2003), no. 8, 629–634.

    MATH  MathSciNet  Google Scholar 

  32. G. Mikhalkin, Enumerative tropical algebraic geometry in ℝ 2. J. Amer. Math. Soc. 18 (2005), no. 2, 313–377.

    Article  MATH  MathSciNet  Google Scholar 

  33. R. Pandharipande, J. Solomon, J. Walcher, Disk enumeration on the quintic 3-fold. math.SG/0610901.

    Google Scholar 

  34. Z. Ran, Lie Atoms and their deformation theory. math/0412204.

    Google Scholar 

  35. Z. Ran, Bernoulli numbers and deformations of schemes and maps. math/ 0609223.

    Google Scholar 

  36. J. Solomon, Intersection theory on the moduli space of holomorphic curves with Lagrangian boundary conditions. math.SG/0606429.

    Google Scholar 

  37. J. Solomon, A differential equation for the open Gromov-Witten potential. a talk given at Real, tropical, and complex enumerative geometry workshop at CRM-Montreal.

    Google Scholar 

  38. A. Voronov, The Swiss-cheese operad. Homotopy invariant algebraic structures (Baltimore, MD, 1998), 365–373, Contemp. Math., 239, Amer. Math. Soc., Providence, RI, 1999.

    Google Scholar 

  39. J.Y. Welschinger, Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry. Invent. Math. 162 (2005), no. 1, 195–234. *

    Google Scholar 

  40. J.Y. Welschinger, Spinor states of real rational curves in real algebraic convex 3-manifolds and enumerative invariants. Duke Math. J. 127 (2005), no. 1, 89–121.

    Article  MATH  MathSciNet  Google Scholar 

  41. J.Y. Welschinger, Invariants of real symplectic four-manifolds out of reducible and cuspidal curves. Bull. Soc. Math. France 134 (2006), no. 2, 287–325.

    MATH  MathSciNet  Google Scholar 

  42. J.Y. Welschinger, Towards relative invariants of real symplectic four-manifolds. Geom. Funct. Anal. 16 (2006), no. 5, 1157–1182.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özgür Ceyhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ceyhan, Ö. (2010). Towards Quantum Cohomology of Real Varieties. In: Ceyhan, Ö., Manin, Y.I., Marcolli, M. (eds) Arithmetic and Geometry Around Quantization. Progress in Mathematics, vol 279. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4831-2_4

Download citation

Publish with us

Policies and ethics