Skip to main content

L p-Norms and Fractal Dimensions of Continuous Function Graphs

  • Chapter
  • First Online:
Recent Developments in Fractals and Related Fields

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 1207 Accesses

Summary

We study the fractal dimensions of continuous function graphs and more general fractal parameters. They are all obtained from the L p-norms of some well-built operators. We give general results about these norms in the continuous and the discrete cases. For a function that is uniformly Hölderian, they allow us to estimate in a very easy way a large family of dimensional indices, like the box dimension and regularization dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Chamizo and A. Córdoba. The fractal dimension of a family of Riemann’s graphs. C.R. Acad. Sci. Paris. 317 (1993) 455–460.

    MATH  Google Scholar 

  2. Y. Demichel. Analyse fractale d’une famille de fonctions aléatoires : les fonctions de bosses. Ph.D. Thesis. (2006).

    Google Scholar 

  3. Y. Demichel and K.J. Falconer. The Hausdorff dimension of pulse sum graphs. Math. Proc. Camb. Phil. Soc. 142 (2007) 145–155.

    Article  MathSciNet  Google Scholar 

  4. Y. Demichel and C. Tricot. Analysis of the fractal sum of pulses. Math. Proc. Camb. Phil. Soc. 141 (2006) 355–370.

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Dubuc and C. Tricot. Variation d’une fonction et dimension de son graphe. C.R. Acad. Sci. Paris. 306 (1988) 531–533.

    MATH  MathSciNet  Google Scholar 

  6. K.J. Falconer. Fractal Geometry, Mathematical Foundations and Applications. second edition (Wiley, New York, 2003).

    Book  MATH  Google Scholar 

  7. G.H. Hardy. Weierstrass’s non-differentiable function. Trans. Amer. Math. Soc. 17 (1916) 301–325.

    MATH  MathSciNet  Google Scholar 

  8. Y. Heurteaux. Weierstrass functions with random phases. Trans. Am. Math. Soc. 355 (2003) 3065–3077.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Istas and G. Lang. Quadratic variations and estimation of the local Hölder index of a Gaussian process. Ann. Inst. Henri Poincaré, Prob. Stat. 33(4) (1997) 407–436.

    Article  MathSciNet  Google Scholar 

  10. S. Jaffard. The spectrum of singularities of Riemann’s function. Rev. Mat. Iber. 12 (1996) 441–460.

    MATH  MathSciNet  Google Scholar 

  11. S. Jaffard. Multifractal formalism for functions. SIAM J. Math. Anal. 24 (1997) 944–970.

    Article  MathSciNet  Google Scholar 

  12. S. Jaffard. Old friends revisited: the multifractal nature of some classical functions. J. Fourier Anal. Appl. 3-1 (1997) 1–22.

    Article  MathSciNet  Google Scholar 

  13. F. Roueff and J. Lévy Véhel. A regularization approach to fractional dimension estimation. Proc. Fractals’ 98, Malta (1998).

    Google Scholar 

  14. C. Tricot. Function norms and fractal dimension. SIAM J. Math. Anal. 28 (1997) 189–212.

    Article  MATH  MathSciNet  Google Scholar 

  15. C. Tricot. Courbes et dimension fractale. Seconde édition (Springer, Berlin, 1999).

    MATH  Google Scholar 

  16. K. Weierstrass. On continuous functions of a real argument that do not have a well-defined differential quotient. Mathematische Werke, Vol. II, (Mayer and Müller, Berlin, 1895) 71–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Demichel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Demichel, Y. (2010). L p-Norms and Fractal Dimensions of Continuous Function Graphs. In: Barral, J., Seuret, S. (eds) Recent Developments in Fractals and Related Fields. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4888-6_10

Download citation

Publish with us

Policies and ethics