Skip to main content

Euclidean Distance Graphs on the Rational Points

  • Chapter
  • First Online:
Ramsey Theory

Part of the book series: Progress in Mathematics ((PM,volume 285))

  • 1919 Accesses

Abstract

Throughout, \(\mathbb{Z}\), \(\mathbb{Q}\), and \(\mathbb{R}\) denote the usual rings of integers, rational numbers, and real numbers, respectively. If X is a set and n is a positive integer, X n denotes, as usual, the set of n-tuples with entries from X.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aaron Abrams and Peter Johnson, Yet another species of forbidden-distances chromatic number, Geombinatorics 10 (January, 2001), 89–95.

    Google Scholar 

  2. Miro Benda and Micha Perles, Colorings of metric spaces, Geombinatorics 9 (January, 2000), 113–126.

    Google Scholar 

  3. Jeffrey Burkert, Explicit colorings of \({\mathbb{Z}}^{3}\) and \({\mathbb{Z}}^{4}\) with four colors to forbid arbitrary distances, Geombinatorics 18 (April, 2009), 149–152.

    Google Scholar 

  4. Jeffrey Burkert and Peter Johnson, Szlam’s lemma: Mutant offspring of a Euclidean Ramsey problem from 1973, with numerous applications; appears in this volume.

    Google Scholar 

  5. Kiran B. Chilakamarri, Unit distance graphs in rational n-spaces, Discrete Math. 69 (1988), 213–218.

    Article  MathSciNet  MATH  Google Scholar 

  6. Josef Cibulka, On the chromatic number of real and rational spaces, Geombinatorics 18 (October, 2008), 53–65.

    Google Scholar 

  7. N. G. de Bruijn and P. Erdös, A color problem for infinite graphs and a problem in the theory of relations, Indagationes Math. 13 (1951), 369–373.

    Google Scholar 

  8. P. Erdös, Problems and results in combinatorial geometry, Discrete Geometry and Convexity, Annals of the New York Academy of Sciences, 440, The New York Academy of Sciences, New York (1985), 1–11.

    Google Scholar 

  9. P. Erdös, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, Euclidean Ramsey theorems II, Coll. Math. Soc. Janos Bolyai 10 (1973), North Holland, Amsterdam (1975), 529–557.

    Google Scholar 

  10. Klaus G. Fischer, Additive k-colorable extensions of the rational plane, Discrete Math. 82 (1990), 181–195.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Frankl and R. M. Wilson, Intersection theorems with geometric consequences, Combinatorica 1 (4) (1981), 357–368.

    Article  MathSciNet  MATH  Google Scholar 

  12. Martin Gardner, A new collection of “brain teasers,” Sci. Amer. 206 (October, 1960), 172–180.

    Google Scholar 

  13. H. Hadwiger, Ungelöste Probleme, Nr. 11, Elemente der Mathematik 16 (1961), 103–104.

    Google Scholar 

  14. D. G. Hoffman, P. D. Johnson Jr., and A. D. Szlam, A new lemma in Ramsey theory, J. Comb. Math. Comb. Comput. 38 (2001), 123–128.

    MathSciNet  MATH  Google Scholar 

  15. P. D. Johnson Jr., Two-colorings of a dense subgroup of \({\mathbb{Q}}^{n}\) that forbid many distances, Discrete Math. 79 (1989/1990), 191–195.

    Google Scholar 

  16. P. D. Johnson Jr., Introduction to “Colorings of metric spaces,” by Benda and Perles, Geombinatorics 9 (January 2000), 110–112.

    MathSciNet  MATH  Google Scholar 

  17. Peter Johnson, Coloring the rational points to forbid the distance one – a tentative history and compendium, Geombinatorics 16 (July, 2006), 209–218.

    Google Scholar 

  18. Peter Johnson, \(4 = {B}_{1}({\mathbb{Q}}^{3}) = {B}_{1}({\mathbb{Q}}^{4})\)!, Geombinatorics 17 (January, 2008), 117–123.

    Google Scholar 

  19. Peter Johnson and Albert Lee, Two theorems concerning the Babai numbers, Geombinatorics 15 (April, 2006), 177–182.

    Google Scholar 

  20. Peter Johnson, Andrew Schneider, and Michael Tiemeyer, \({\mathbb{B}}_{1}({\mathbb{Q}}^{3}) = 4\), Geombinatorics 16 (April, 2007), 356–362.

    Google Scholar 

  21. Peter Johnson and Michael Tiemeyer, Which pairs of distances can be forbidden by a 4-coloring of \({\mathbb{Q}}^{3}\)? Geombinatorics 18 (April, 2009), 161–170.

    Google Scholar 

  22. Peter Johnson and Vitaly Voloshin, Geombinatorial mixed hypergraph coloring problems, Geombinatorics 17 (October, 2007), 57–67.

    Google Scholar 

  23. R. Juhász, Ramsey type theorems in the plane, J. Combin. Theory, Ser. A, 27 (1979), 152–160.

    Google Scholar 

  24. D. J. Jungreis, M. Reid, and D. Witte, Distances forbidden by some 2-coloring of \({\mathbb{Q}}^{2}\), Discrete Math. 82 (1990), 53–56.

    Article  MathSciNet  MATH  Google Scholar 

  25. Arnfried Kemnitz and Massimiliano Murangio, Coloring the line, Ars Combinatoria 85 (2007), 183–192.

    Google Scholar 

  26. D. G. Larman and C. A. Rogers, The realization of distances within sets in Euclidean space, Mathematika 19 (1972), 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  27. Matthias Mann, A new bound for the chromatic number of rational five-space, Geombinatorics 11 (October, 2001), 49–53.

    Google Scholar 

  28. Matthias Mann, Hunting unit distance graphs in rational n-spaces, Geombinatorics 13 (October, 2003), 86–97.

    Google Scholar 

  29. L. Moser and W. Moser, Solution to Problem 10, Can. Math. Bull. 4 (1961), 187–189.

    Google Scholar 

  30. Radoš Radoičić and Géza Tóth, Note on the chromatic number of space, in Discrete and Computational Geometry, the Goodman - Pollack Festschrift, Boris Aronov et al., eds. Berlin: Springer, Algorithms Comb. 25 (2003), 696–698.

    Google Scholar 

  31. A. M. Raigorodskij, Borsuk’s problem and the chromatic numbers of some metric spaces, Russ. Math. Surv. 56 (1) (2001), 103–139.

    Article  Google Scholar 

  32. Michael Reid, On the connectivity of unit distance graphs, Graphs Combin. 12 (1996), 295–303.

    Google Scholar 

  33. I. J. Schoenberg, Regular simplices and quadratic forms, J. London Math. Soc. 12 (1937), 48–55.

    Article  Google Scholar 

  34. S. Shelah and A. Soifer, Axiom of choice and chromatic number of the plane, J. Combin. Theory, Ser. A. 103 (2003), 387–391.

    Google Scholar 

  35. Alexander Soifer, The Mathematical Coloring Book, ISBN 978-0-387-74640-1, New York: Springer, 2009.

    Google Scholar 

  36. A. D. Szlam, Monochromatic translates of configurations in the plane, J. Combin. Theory Ser. A 93 (2001), 173–176.

    Google Scholar 

  37. V. Voloshin, Coloring Mixed hypergraphs: theory, algorithms and applications, Providence, RI: AMS monograph, 2002.

    MATH  Google Scholar 

  38. D. R. Woodall, Distances realized by sets covering the plane, J. Combin. Theory Ser. A 14 (1973), 187–200.

    Google Scholar 

  39. Joseph Zaks, On the chromatic number of some rational spaces, Ars Combinatoria 33 (1992), 253–256.

    Google Scholar 

  40. Joseph Zaks, On the four-colorings of rational four-space, Aequationes Mathematicae 37 (1989), 259–266.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Johnson Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Johnson, P. (2011). Euclidean Distance Graphs on the Rational Points. In: Soifer, A. (eds) Ramsey Theory. Progress in Mathematics, vol 285. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8092-3_9

Download citation

Publish with us

Policies and ethics