Skip to main content

Manifold Learning for Multi-dimensional Auto-regressive Dynamical Models

  • Chapter
Machine Learning for Vision-Based Motion Analysis

Part of the book series: Advances in Pattern Recognition ((ACVPR))

  • 2646 Accesses

Abstract

We present a general differential-geometric framework for learning distance functions for dynamical models. Given a training set of models, the optimal metric is selected among a family of pullback metrics induced by the Fisher information tensor through a parameterized automorphism. The problem of classifying motions, encoded as dynamical models of a certain class, can then be posed on the learnt manifold. In particular, we consider the class of multidimensional autoregressive models of order 2. Experimental results concerning identity recognition are shown that prove how such optimal pullback Fisher metrics greatly improve classification performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the case considered here, a single coordinate chart actually spans the whole manifold.

  2. 2.

    Here {V k+1} is a sequence of martingale increments and {W k+1} is a sequence of i.i.d. Gaussian noises \({\mathcal {N}}(0,1)\).

References

  1. Amari, S.-I.: Differential Geometric Methods in Statistics. Springer, Berlin (1985)

    Book  Google Scholar 

  2. Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D.: Learning distance functions using equivalence relations In: ICML03, pp. 11–18 (2003)

    Google Scholar 

  3. Belkin, M., Niyogi, P.: Semi-supervised learning on Riemannian manifolds. Mach. Learn. 56, 209–239 (2004)

    Article  MATH  Google Scholar 

  4. Bengio, Y., Paiement, J.-F., Vincent, P.: Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering. Technical Report (2003)

    Google Scholar 

  5. Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning in semi-supervised clustering. In: Proc. of ICML’04 (2004)

    Google Scholar 

  6. Bissacco, A., Chiuso, A., Soatto, S.: Classification and recognition of dynamical models: The role of phase, independent components, kernels and optimal transport. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1958–1972 (2007)

    Article  Google Scholar 

  7. Burman, P.: A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika 76(3), 503–514 (1989)

    MathSciNet  MATH  Google Scholar 

  8. Chaudhry, R., Ravichandran, A., Hager, G., Vidal, R.: Histograms of oriented optical flow and Binet–Cauchy kernels on nonlinear dynamical systems for the recognition of human actions. In: Proc. of CVPR’09, pp. 1932–1939 (2009)

    Google Scholar 

  9. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  10. Do, M.N.: Fast approximation of Kullback–Leibler distance for dependence trees and hidden Markov models. IEEE Signal Process. Lett. 10(4), 115–118 (2003)

    Article  MathSciNet  Google Scholar 

  11. Doretto, G., Chiuso, A., Wu, Y.N., Soatto, S.: Dynamic textures. Int. J. Comput. Vis. 51(2), 91–109 (2003)

    Article  MATH  Google Scholar 

  12. Eick, C.F., Rouhana, A., Bagherjeiran, A., Vilalta, R.: Using clustering to learn distance functions for supervised similarity assessment. In: ICML and Data Mining (2005)

    Google Scholar 

  13. Elliot, R., Aggoun, L., Moore, J.: Hidden Markov Models: Estimation and Control. Springer, Berlin (1995)

    Google Scholar 

  14. Frosini, P.: Measuring shape by size functions. In: Proceedings of SPIE on Intelligent Robotic Systems, vol. 1607, pp. 122–133 (1991)

    Google Scholar 

  15. Gross, R., Shi, J.: The CMU motion of body (Mobo) database. Technical Report, CMU (2001)

    Google Scholar 

  16. Hanzon, B., Peeters, R.L.M.: Aspects of Fisher geometry for stochastic linear systems. In: Open Problems in Mathematical Systems and Control Theory, pp. 27–30 (2002)

    Google Scholar 

  17. Itoh, M., Shishido, Y.: Fisher information metric and poisson kernels. Differ. Geom. Appl. 26(4), 347–356 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kerckhove, M.: Computation of ridges via pullback metrics from scale space. In: Book Scale-Space Theories in Computer Vision. Lecture Notes in Computer Science, vol. 1682/1999, pp. 82–92. Springer, Berlin (1999)

    Chapter  Google Scholar 

  19. Kim, T.K., Cipolla, R.: Canonical correlation analysis of video volume tensors for action categorization and detection. IEEE Trans. Pattern Anal. Mach. Intell. 31(8), 1415–1428 (2009)

    Article  Google Scholar 

  20. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lebanon, G.: Metric learning for text documents. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 497–508 (2006)

    Article  Google Scholar 

  22. Lee, L., Grimson, W.: Gait analysis for recognition and classification. In: AFGR’02, pp. 155–162 (2002)

    Google Scholar 

  23. Martin, R.J.: A metric for ARMA processes. IEEE Trans. Signal Process. 48(4), 1164–1170 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Murray, M.K., Rice, J.W.: Differential Geometry and Statistics. CRC Press, Boca Raton (1993)

    MATH  Google Scholar 

  25. Peeters, R.L.M., Hanzon, B.: On the Riemannian manifold structure of classes of linear systems (2003). Equadiff

    Google Scholar 

  26. Pitis, G.: On some submanifolds of a locally product manifold. Kodai Math. J. 9(3), 327–333 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rijkeboer, A.L.: Differential geometric models for time-varying coefficients of autoregressive processes. PhD Thesis, Tilburg University (1994)

    Google Scholar 

  28. Rogez, G., Rihan, J., Ramalingam, S., Orrite, C., Torr, P.H.S.: Randomized trees for human pose detection. In: CVPR’08 (2008)

    Google Scholar 

  29. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  30. Schultz, M., Joachims, T.: Learning a distance metric from relative comparisons. In: NIPS (2004)

    Google Scholar 

  31. Shental, N., Hertz, T., Weinshall, D., Pavel, M.: Adjustment learning and relevant component analysis. In: ECCV’02 (2002)

    Google Scholar 

  32. Smola, A.J., Vishwanathan, S.V.N.: Hilbert space embeddings in dynamical systems. In: Proc. of IFAC’03, pp. 760–767 (2003)

    Google Scholar 

  33. Sundaresan, A., Chowdhury, A.K.R., Chellappa, R.: A hidden Markov model based framework for recognition of humans from gait sequences. In: ICP’03, pp. II: 93–96 (2003)

    Google Scholar 

  34. Tsang, I.W., Kwok, J.T., Bay, C.W., Kong, H.: Distance metric learning with kernels. In: Proc. of the International Conference on Artificial Intelligence (2003)

    Google Scholar 

  35. Wang, Y., Mori, G.: Max-margin hidden conditional random fields for human action recognition. In: CVPR, pp. 872–879 (2009)

    Google Scholar 

  36. Xie, L., Ugrinovskii, A., Petersen, I.R.: Probabilistic distances between finite-state finite-alphabet hidden Markov models. In: Proc. of CDC’03, pp. 5347–5352 (2003)

    Google Scholar 

  37. Xing, E.P., Ng, A.Y., Jordan, M.I., Russel, S.: Distance metric learning with applications to clustering with side information. In: NIPS’03 (2003)

    Google Scholar 

  38. Yuan, J.S., Liu, Z.C., Wu, Y.: Discriminative subvolume search for efficient action detection. In: CVPR, pp. 2442–2449 (2009)

    Google Scholar 

  39. Zhang, Z.: Learning metrics via discriminant kernels and multidimensional scaling: toward expected Euclidean representation. In: ICML’03, Hong Kong (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Cuzzolin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Cuzzolin, F. (2011). Manifold Learning for Multi-dimensional Auto-regressive Dynamical Models. In: Wang, L., Zhao, G., Cheng, L., Pietikäinen, M. (eds) Machine Learning for Vision-Based Motion Analysis. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-0-85729-057-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-057-1_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-056-4

  • Online ISBN: 978-0-85729-057-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics