Skip to main content

Distributed Sensing and Processing for Multi-Camera Networks

  • Chapter
Distributed Video Sensor Networks

Abstract

Sensor networks with large numbers of cameras are becoming increasingly prevalent in a wide range of applications, including video conferencing, motion capture, surveillance, and clinical diagnostics. In this chapter, we identify some of the fundamental challenges in designing such systems: robust statistical inference, computationally efficiency, and opportunistic and parsimonious sensing. We show that the geometric constraints induced by the imaging process are extremely useful for identifying and designing optimal estimators for object detection and tracking tasks. We also derive pipelined and parallelized implementations of popular tools used for statistical inference in non-linear systems, of which multi-camera systems are examples. Finally, we highlight the use of the emerging theory of compressive sensing in reducing the amount of data sensed and communicated by a camera network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aghajan, H., Cavallaro, A.: Multi-Camera Networks: Concepts and Applications. Elsevier, Amsterdam (2008)

    Google Scholar 

  2. Lv, T., Ozer, B., Wolf, W.: A real-time background subtraction method with camera motion compensation. In: Proceedings of IEEE International Conference on Multimedia and Expo, vol. 1, pp. 331–334 (2004)

    Google Scholar 

  3. Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.S.: Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proc. IEEE 90(7), 1151–1163 (2002)

    Article  Google Scholar 

  4. Khan, S.M., Shah, M.: A multi-view approach to tracking people in crowded scenes using a planar homography constraint. In: European Conference on Computer Vision, vol. 4, 133–146 (2006)

    Google Scholar 

  5. Kim, K., Davis, L.S.: Multi-camera tracking and segmentation of occluded people on ground plane using search-guided particle filtering. In: Proceedings of European Conference on Computer Vision, vol. 3, pp. 98–109 (2006)

    Google Scholar 

  6. Sankaranarayanan, A.C., Chellappa, R.: Optimal multi-view fusion of object locations. In: Proceedings of IEEE Workshop on Motion and Video Computing (WMVC), pp. 1–8 (2008)

    Google Scholar 

  7. Fleuret, F., Berclaz, J., Lengagne, R.: Multi-camera people tracking with a probabilistic occupancy map. Technical report, EPFL/CVLAB2006.07 (July 2006)

    Google Scholar 

  8. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  9. Smith, R., Self, M., Cheeseman, P.: Estimating uncertain spatial relationships in robotics. In: Autonomous Robot Vehicles, pp. 167–193 (1990)

    Chapter  Google Scholar 

  10. Smith, R.C., Cheeseman, P.: On the representation and estimation of spatial uncertainty. Int. J. Robot. Res. 5(4), 56–68 (1986)

    Article  Google Scholar 

  11. Kanatani, K.: Statistical Optimization for Geometric Computation: Theory and Practice. Elsevier, New York (1996)

    MATH  Google Scholar 

  12. Sankaranarayanan, A.C., Veeraraghavan, A., Chellappa, R.: Object detection, tracking and recognition for multiple smart cameras. Proc. IEEE 96(10), 1606–1624 (2008)

    Article  Google Scholar 

  13. Bar-Shalom, Y., Fortmann, T.: Tracking and Data Association. Academic Press, San Diego (1987)

    Google Scholar 

  14. Gordon, N., Salmon, D., Smith, A.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. Radar Signal Process. 140, 107–113 (1993)

    Article  Google Scholar 

  15. Chib, S., Greenberg, E.: Understanding the metropolis hastings algorithm. Am. Stat. 49, 327–335 (1995)

    Google Scholar 

  16. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)

    Article  MATH  Google Scholar 

  17. Sankaranarayanan, A.C., Srivastava, A., Chellappa, R.: Algorithmic and architectural optimizations for computationally efficient particle filtering. IEEE Trans. Image Process. 17(5), 737–748 (2008)

    Article  MathSciNet  Google Scholar 

  18. Zhou, S., Chellappa, R., Moghaddam, B.: Visual tracking and recognition using appearance-adaptive models in particle filters. Trans. Image Process. 11, 1434–1456 (2004)

    Google Scholar 

  19. Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28(3), 253–263 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Candčs, E.J.: The restricted isometry property and its implications for compressed sensing. C. R. Math. (2008)

    Google Scholar 

  22. Needell, D., Tropp, J.A.: CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. (2008)

    Google Scholar 

  23. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, New York (1999)

    MATH  Google Scholar 

  24. Duarte, M., Davenport, M., Takbar, D., Laska, J., Sun, T., Kelly, K., Baraniuk, R.: Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25(2), 83–91 (2008)

    Article  Google Scholar 

  25. Cevher, V., Sankaranarayanan, A., Duarte, M.F., Reddy, D., Baraniuk, R.G., Chellappa, R.: Compressive sensing for background subtraction. In: Proceedings of European Conference on Computer Vision, pp. 12–18 (2008)

    Google Scholar 

  26. Coates, M.: Distributed particle filters for sensor networks. In: Proceedings of the Third International Symposium on Information Processing in Sensor Networks, pp. 99–107 (2004)

    Chapter  Google Scholar 

  27. Xiao, L., Boyd, S., Kim, S.J.: Distributed average consensus with least-mean-square deviation. J. Parallel Distrib. Comput. 67(1), 33–46 (2007)

    Article  MATH  Google Scholar 

  28. Sheng, X., Hu, Y.H., Ramanathan, P.: Distributed particle filter with GMM approximation for multiple targets localization and tracking in wireless sensor network. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks (2005)

    Google Scholar 

  29. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  30. Tenenbaum, J.B., Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  31. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Office of Naval Research under the contracts N00014-09-1-1162 and N00014-07-1-0936, the U.S. Army Research Laboratory and the U.S. Army Research Office under grant number W911NF-09-1-0383, and the AFOSR under the contracts FA9550-09-1-0432 and FA9550-07-1-0301. The authors thank Prof. Volkan Cevher, Prof. Ankur Srivastava, Dr. Ashok Veeraraghavan, Dr. Marco Duarte and Mr. Dikpal Reddy for valuable discussions and collaborations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aswin C. Sankaranarayanan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Sankaranarayanan, A.C., Chellappa, R., Baraniuk, R.G. (2011). Distributed Sensing and Processing for Multi-Camera Networks. In: Bhanu, B., Ravishankar, C., Roy-Chowdhury, A., Aghajan, H., Terzopoulos, D. (eds) Distributed Video Sensor Networks. Springer, London. https://doi.org/10.1007/978-0-85729-127-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-127-1_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-126-4

  • Online ISBN: 978-0-85729-127-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics