Skip to main content

The Use of Organic Dyes in the Elucidation of Enzyme Structures and Mechanisms

  • Chapter
Reactive Dyes in Protein and Enzyme Technology
  • 17 Accesses

Abstract

One of the most fundamental problems of enzymology is the elucidation of the molecular mechanisms by which enzymes work. The determination of the way in which such complex structures act to bring about efficient, specific catalytic reactions is a very interesting but difficult problem which can only be solved by the assembly of evidence from many different lines of research. Many factors contribute to the extraordinary catalytic properties of enzymes, including the precise juxtapositions of functional groups and particularly favourable micro-environments at active sites which enable specific reactions to occur. Precisely these factors influence the reactivity of functional groups in chemical modification and affinity labelling studies of enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M. J. (1970). Structure of lactate dehydrogenase at 2.8Ã… resolution. Nature, Lond., 227, 1098

    Article  Google Scholar 

  • Anderson, S. R. and Weber, G. (1965). Multiplicity of binding of lactate dehydrogenases. Biochemistry, 4, 1948

    Article  Google Scholar 

  • Barden, R. E., Darke, P. L., Deems, R. A. and Dennis, E. A. (1980). Interaction of phospholipase A2 from cobra venom with Cibacron Blue F3G-A. Biochemistry, 19, 1621

    Article  Google Scholar 

  • Barker, D. G. and Winter, G. (1982). Conserved cysteine and histidine residues in the structures of the tyrosyl and methionyl-tRNA synthetases. FEBS Lett., 145, 191

    Article  Google Scholar 

  • Beissner, R., Quiocho, F. A. and Rudolph, F. B. (1979). Dinucleotide fold proteins. J. Molec. Biol., 134, 847

    Article  Google Scholar 

  • Biellmann, J.-F., Samama, J.-P., Brändén, C. I. and Eklund, H. (1979). X-Ray studies of the binding of Cibacron Blue F3G-A to liver alcohol dehydrogenase. Eur. J. Biochem., 102, 107

    Article  Google Scholar 

  • Blow, D. M., Bhat, T. N., Metcalf, A., Risler, J. N., Brunnie, S. and Zelwer, C. (1983). Structural homology in the amino-terminal domains of two aminoacyl tRNA-synthetases. J. Molec. Biol., 171, 571

    Article  Google Scholar 

  • Blow, D. M., Birktoft, J. J. and Hartley, B. S. (1969). Role of a buried acid group in the mechanism of action of chymotrypsin. Nature, Lond., 221, 337

    Article  Google Scholar 

  • Bond, J. S., Francis, S. H. and Park, J. H. (1970). An essential histidine in the catalytic activities of 3-phosphoglyceraldehyde dehydrogenase. J. Biol. Chem., 245, 1041

    Google Scholar 

  • Bosshard, H. R., Koch, G. L. E. and Hartley, B. S. (1978). The aminoacyl-tRNA synthetase-tRNA complex: detection by differential labelling of lysine residues involved in complex formation. J. Molec. Biol., 119, 377

    Article  Google Scholar 

  • Bruton, C. J. and Atkinson, T. (1979). The binding of aminoacyl-tRNA synthetases to triazine dye conjugates. Nucleic Acids Res., 7, 1579

    Article  Google Scholar 

  • Buehner, M., Ford, G. C., Moras, D., Olsen, K. W. and Rossmann, M. G. (1973). D-Glyceraldehyde-3-phosphate dehydrogenase: three-dimensional structure and evolutionary significance. Proc. Natl Acad. Sci. USA, 70, 3052

    Article  Google Scholar 

  • Carter, C. W., Jr., and Carter, C. W. (1979). Protein crystallization using incomplete factorial experiments. J. Biol. Chem., 254, 12219

    Google Scholar 

  • Clonis, Y. D., Goldfinch, M. J. and Lowe, C. R. (1981). The interaction of yeast hexokinase with Procion Green H-4G. Biochem. J., 197, 203

    Article  Google Scholar 

  • Davidson, W. S. and Flynn, T. G. (1979). A functional arginine residue in NADPH-dependent aldehyde reductase from pig kidney. J. Biol. Chem., 245, 3724

    Google Scholar 

  • Disabato, G. and Ottesen, M. (1965). Effect of coenzymes on the hydrogen-deuterium exchange of chicken heart lactic dehydrogenase as measured by infrared spectrophotometry. Biochemistry, 4, 422

    Article  Google Scholar 

  • Edman, P. and Begg, G. R. (1967). A protein sequenator. Eur. J. Biochem., 1, 80

    Article  Google Scholar 

  • Eklund, H., Brändén, C. I. and Journvall, H. (1976a). Structural comparisons of mammalian, yeast and bacillar alcohol dehydrogenases. J. Molec. Biol., 102, 61

    Article  Google Scholar 

  • Eklund, H., Nordstrom, B., Zeppezauer, E., Sonderlund, G., Ohlsson, I., Boiwe, T., Sonderberg, B. O., Tapia, O., Brändén, C. I. and Akeson, A. (1976b). Three dimensional structure of horse liver alcohol dehydrogenase at 2.4Ã… resolution. J. Molec. Biol., 102, 27

    Article  Google Scholar 

  • Gilleland, M, J. and Shore, J. D. (1969). Inhibition of horse liver alcohol dehydrogenase by l-3,3–,5-triiodothyronine. J. Biol. Chem., 224, 5357

    Google Scholar 

  • Glazer, A. N. (1967). The specific binding of Biebrick Scarlet to the active site of a-chymotrypsin. J. Biol. Chem., 247, 4528

    Google Scholar 

  • Glazer, A. N. (1970). On the prevalence of ‘non-specific’ binding at the specific binding sites of globular proteins. Proc. Natl Acad. Sci. USA, 65, 1057

    Article  Google Scholar 

  • Gray, W., Jr. (1967). Dansyl chloride procedure. In Methods in Enzymology (ed. C. W. H. Hirs), Vol. XI, pp. 139–151, Academic Press, New York

    Google Scholar 

  • Hartley, B. S. (1964). The structure and activity of chymotrypsin. In Structure and Activity of Enzymes (ed. T. W. Goodwin, J. J. Harris and B. S. Hartley), pp. 47–60, Academic Press, New York

    Google Scholar 

  • Hartley, B. S. (1974). The active centres of serine proteinases. Ann. N. Y. Acad. Sci., 227, 438

    Article  Google Scholar 

  • Hill, R. L. and Smith, E. L. (1957). Leucine aminopeptidase. VI. Inhibition by alcohols and other compounds. J. Biol. Chem., 224, 209

    Google Scholar 

  • Houndtondji, C. and Blanquet, S. (1985). Methionyl-tRNA synthetase from Escherichia coli: primary structure at the binding site for the 3–-end of tRNA. Methods Biochem., 24, 1175

    Article  Google Scholar 

  • Hughes, G. J. (1983). High performance liquid chromatography: analytical and preparative applications in protein structure determination. In Methods in Biochemical Analysis (ed. D. Glick), pp. 59–139

    Chapter  Google Scholar 

  • Hughes, P., Sherwood, R. F. and Lowe, C. R. (1984). Studies on the nature of transition-metal-ion-mediated binding of triazine dyes to enzymes. Eur. J. Biochem., 144, 135

    Article  Google Scholar 

  • Hunkapillar, M. W. and Hood, L. E. (1983). In Methods in Enzymology (ed. C. H. W. Hirs and S. N. Timasheff), Vol. 91, pp. 486–494, Academic Press, New York

    Google Scholar 

  • Issaly, I., Poiret, M., Tanc, P., Thiry, L. and Herve, G. (1982). Interactions of Cibacron Blue F3G-A and nucleotides with E. coli aspartate carbamoyltransferase and its subunits. Biochemistry, 21, 1612

    Article  Google Scholar 

  • Jacobsberg, L. B., Kautrowitz, E. R. and Lipscomb, W.N. (1975). Interaction of tetraiodofluorescein with aspartate transcarbamylase and its isolated catalytic and regulatory sub-unit. J. Biol. Chem., 250, 9238

    Google Scholar 

  • Jacobsberg, L. B., Kautrowitz, E. R., McMurray, C. H. and Lipscomb, W. N. (1973). The interaction of tetraiodofluorescein with aspartate transcarbamylase. Biochem. Biophys. Res. Commun., 55, 1255

    Article  Google Scholar 

  • Journvall, H. (1970). Horse liver alcohol dehydrogenase. The primary structure of the protein chain of the ethanol-active isoenzyme. Eur. J. Biochem., 16, 25

    Article  Google Scholar 

  • Journvall, H., Woenckhaus, C. and Johnscher, G. (1975). Modification of alcohol dehydrogenase with a reactive coenzyme analogue. Eur. J. Biochem., 53, 71

    Article  Google Scholar 

  • Kimmel, M. T. and Plummer, T. H. (1972). Identification of a glutamic acid at the active centre of bovine carboxypeptidase. J. Biol. Chem., 247, 7864

    Google Scholar 

  • Kitz, R. and Wilson, I. B. (1962). Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. J. Biol. Chem., 237, 3245

    Google Scholar 

  • Lee, R. T. and McElroy, W. O. (1971). Isolation and partial characterization of a peptide derived from the luciferin binding site of firefly luciferase. Arch. Biochem. Biophys., 146, 551

    Article  Google Scholar 

  • Loftfield, R. B. (1972). The mechanism of aminoacylation of transfer RNA. Progr. Nucleic Acid Res. Molec. Biol., 12, 87

    Article  Google Scholar 

  • McArdell, J. E. C., Atkinson, T. and Bruton, C. J. (1982). The interaction of tryptophanyl-tRNA synthetase with the triazine dye Brown MX-5BR. Eur. J. Biochem., 125, 361

    Article  Google Scholar 

  • McArdell, J. E. C., Atkinson, T. and Bruton, C. J. (1987a). The isolation of a peptide from the catalytic domain of Bacillus stearothermophilus tryptophanyl-tRNA synthetase. The interaction of Brown MX-5BR with tyrosyl-tRNA synthetase. Biochem. J., 243, 701

    Article  Google Scholar 

  • McArdell, J. E. C., Atkinson, T. and Bruton, C. J. (1987b). Probing the substrate binding sites of aminoacyl-tRNA synthetases with the Procion dye Green HE-4BD and its reactive derivative Bis-dichloro-Green 4BD (in preparation)

    Google Scholar 

  • McCarthy, K., Lovenber, W. and Sjoerdsma, A. (1968). The mechanism of inhibition of horse liver alcohol dehydrogenase by thyroxine and related compounds. J. Biol. Chem., 243, 2754

    Google Scholar 

  • Moe, J. G. and Piszkiewicz, D. (1979). Isoleucyl transfer ribonucleic acid synthetase. Competitive inhibition with respect to transfer ribonucleic acid by Blue Dextran. Biochemistry, 18, 2810

    Article  Google Scholar 

  • Morris, H. R. (1974). Peptide sequence determination by mass spectrometry. Biochem. Soc. Trans., 2, 806

    Article  Google Scholar 

  • Murdock, A. L., Grist, K. L. and Hirs, C. H. W. (1966). On the dinitrophenylation of bovine pancreatic ribonuclease A. Arch. Biochem. Biophys., 114, 375

    Article  Google Scholar 

  • Petra, P. H., Bradshaw, R. A., Walsh, K. A. and Neurath, H. (1969). Identification of the amino acid replacements characterizing the allotypic forms of bovine carboxypeptidase A. Biochemistry, 8, 2762

    Article  Google Scholar 

  • Polgar, L. and Halasz, P. (1982). Review article: Current problems in mechanistic studies of serine and cysteine proteinases. Biochem. J., 207, 1

    Article  Google Scholar 

  • Pompon, D., Guiard, B. and Lederer, F. (1980). Binding of Cibacron Blue to the flavin and NADH sites in cytochrome b5 reductase. Eur. J. Biochem., 110, 565

    Article  Google Scholar 

  • Rao, S. T. and Rossman, M. G. (1973). Comparison of super-secondary structures in proteins. J. Molec. Biol., 76, 241

    Article  Google Scholar 

  • Rippa, M., Picco, C. and Pontremoli, S. (1970). Rose Bengal as a specific photosensitizer for a histidine residue at the triphosphopyridine nucleotide binding site of 6-phosphogluconate dehydrogenase. J. Biol. Chem., 245, 4977

    Google Scholar 

  • Santi, D. V. and Cunnion, S. O. (1974). Macromolecular affinity labelling agents. Reaction of N-bromoacetylisoleucyl transfer ribonucleic acid with isoleucyl transfer ribonucleic acid synthetase. Biochemistry, 13, 481

    Article  Google Scholar 

  • Small, D. A. P., Lowe, C. R., Atkinson, T. and Bruton, C. J. (1982). Affinity labelling of enzymes with triazine dyes: isolation of a peptide from the catalytic domain of horse liver alcohol dehydrogenase using Procion Blue MX-R as a structural probe. Eur. J. Biochem., 128, 119

    Article  Google Scholar 

  • Steitz, T. A., Henderson, R. and Blow, D. M. (1969). Structure of crystalline α-chymotrypsin. J. Molec. Biol., 46, 337

    Article  Google Scholar 

  • Subramanian, S. and Kaufman, B. T. (1980). Dihydrofolate reductase from chicken liver and Lactobacillus casei bind Cibacron Blue F3G-A in different modes and at different sites. J. Biol. Chem., 225, 10587

    Google Scholar 

  • Thompson, S. T., Cass, K. H. and Stellwagen, E. (1975). Blue Dextran Sepharose: an affinity column for the dinucleotide fold in proteins. Proc. Natl Acad. Sci. USA, 72, 669

    Article  Google Scholar 

  • Wasserman, P. M. and Lentz, P. J., Jr. (1971). The interaction of tetraiodo-fluorescein with dogfish muscle lactate dehydrogenase: a chemical and X-ray crystallographic study. J. Molec. Biol., 60, 509

    Article  Google Scholar 

  • Wilson, J. E. (1976). Applications of Blue Dextran and Cibacron Blue F3G-A in purification and structural studies of nucleotide requiring enzymes. Biochem. Biophys. Res. Commun., 72, 816

    Article  Google Scholar 

  • Witt, J. J. and Roskoski, R., Jr. (1980). Adenosine cyclic 3–,5–-monophosphate dependent protein kinase: active site directed inhibition by Cibacron Blue F3G-A. Biochemistry, 19, 143

    Article  Google Scholar 

  • Zelwer, C., Risler, J. L. and Brunie, S. (1982). Crystal structure of Escherichia coli methionyl tRNA-synthetase at 2.5Ã… resolution. J. Molec. Biol., 155, 63

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1987 The contributors

About this chapter

Cite this chapter

McArdell, J.E.C., Bruton, C.J. (1987). The Use of Organic Dyes in the Elucidation of Enzyme Structures and Mechanisms. In: Clonis, Y.D., Atkinson, T., Bruton, C.J., Lowe, C.R. (eds) Reactive Dyes in Protein and Enzyme Technology. Palgrave, London. https://doi.org/10.1007/978-1-349-06582-0_8

Download citation

Publish with us

Policies and ethics