Skip to main content

Neuropharmacological Adaptive Effects in the Actions of Antidepressant Drugs, ECT and Lithium

  • Chapter
New Concepts in Depression
  • 20 Accesses

Abstract

It has long been assumed that there is a latent period of one to two weeks between beginning treatment with antidepressant drugs and evidence of clinical improvement (Oswald et al., 1972). However, there is an increasing feeling that this may be an over-simplification. Depression is a complex illness with many facets of which mood is only one. Overall rating scales may be a blunt instrument for detecting improvements in a multi-symptomatic state. There are hints in the literature that the response of certain symptoms to antidepressants may occur within a few days. There are also confounding factors: for example, some antidepressants, e.g. amitriptyline, are sedative and may improve sleep early, so altering responses as judged by rating scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atterwill, C.R., and Tordoff, A.F.C. (1982). Effects of repeated lithium administration on the subcellular distribution of 5-hydroxytryptamine in rat brain. Br. J. Pharmacol, 76, 413–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbaccia, M.L., Gandolfi, O., Chuang, D.M., and Costa, E. (1983). Modulation of neuronal uptake by a putative endogenous ligand of imipramine recognition sites. Proc. Nat. Acad. Sci, 80, 5134–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge, M.J., Downes, C.P., and Hanley, M.R. (1982). Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J., 206, 587–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blier, P., and De Montigny, C. (1985). Short-term lithium administration enhances seroto-nergic neurotransmission: Electrophysiological evidence in the rat CNS. Europ. J. Pharmacol, 113, 69–77.

    Article  CAS  Google Scholar 

  • Bradley, P.B., Engel, G., Feniuk, W., Fozard, J.R., Humphrey, P.P.A., Middlemiss, D.N., Mylecharane, E.J., Richardson, B.P., and Saxena, P.R. (1986). Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuro-pharmacology, 25, 563–76.

    CAS  Google Scholar 

  • Checkley, S.A., Meldrum, B.S., and McWilliam, J.R. (1984). Mechanism of action of ECT.

    Google Scholar 

  • Neuroendocrine studies. In Lerer, B., Weiner, R.D., and Belmaker, R.H. (eds.), ECT: Basic Mechanisms (Biological Psychiatry: New Prospects, 1). Libbey, London, 101–6.

    Google Scholar 

  • Costain, D.W., Cowen, P.J., Gelder, M.G., and Grahame-Smith, D.G. (1982). Electrocon-vulsive therapy in the brain: evidence for increased dopamine mediated responses. Lancet, ii, 400–4.

    Google Scholar 

  • Cowen, P.J., Fraser, S., Grahame-Smith, D.G., Green, A.R., and Stamford, C. (1983). The effect of chronic antidepressant administration on β-adrenoceptor function of the rat pineal. Br. J. Pharmac, 78, 89–96.

    Article  CAS  Google Scholar 

  • Cowen, P.J., Geaney, D.P., Schachter, M., Green, A.R., and Elliott, J.M. (1986). Des-methylimipramine treatment in normal subjects: effects on neuroendocrine responses to L-tryptophan and platelet 5HT related receptors. Archives of General Psychiatry, 43, 61–7.

    Article  CAS  PubMed  Google Scholar 

  • Cowen, P.J., Green, A.R., Grahame-Smith, D.G., and Braddock, L.E. (1985). Plasma melatonin during desmethylimipramine treatment. Evidence for changes in noradrenergic transmission. J. Clin. Pharmac, 19, 799–805.

    Article  CAS  Google Scholar 

  • De Montigny, C, and Blier, P. (1984). Effects of antidepressant treatments in 5HT neurotransmission: electrophysiological and clinical studies. In Usdin,E., Asberg, M., Bertilsson, L., and Sjoqvist, F. (eds.), Frontiers in Biochemical and Pharmacological Research in Depression. Raven, New York, 223–39.

    Google Scholar 

  • De Montigny, C, and Blier, P. (1985). Electrophysiological aspects of serotonin neuro-pharmacology: implications for antidepressant treatments. In Green, A.R. (ed.), Neuro-pharmacology of Serotonin. Oxford University Press, Oxford, 181–217.

    Google Scholar 

  • Fink, M. (1979). Convulsive Therapy: Theory and Practice. Raven, New York.

    Google Scholar 

  • Glue, P.W., Cowen, P.J., Nutt, D.J., Kolakowska, T., and Grahame-Smith, D.G. (1986). The effects of lithium on 5-HT mediated neuroendocrine responses and platelet 5-HT receptors. Psychopharmacology, 90, 398–402.

    Article  CAS  PubMed  Google Scholar 

  • Godfrey, P.P., Grahame-Smith, D.G., Gray, J.A., and McClue, S.J. (1987). GABAB receptor mediated inhibition of 5-HT stimulated phosphatidylinositol turnover in mouse cerebral cortex. Br. J. Pharmacol, 90, 253.

    Google Scholar 

  • Goodwin, G.M., De Souza, R.J., Wood, A.J., and Green, A.R. (1986a). Lithium decreases 5-HT1A and 5-HT2 receptor, and α2-adrenoceptor mediated function in mice. Psycho-pharmacology, 90, 482–7.

    Google Scholar 

  • Goodwin, G.M., De Souza, R.J., Wood, A.J., and Green, A.R. (1986b). The enhancement by lithium of the 5-HT1A mediated serotonin syndrome produced by 8-OH-DPAT in the rat: evidence for a post-synaptic mechanism. Psychopharmacology, 90, 488–93.

    Article  CAS  PubMed  Google Scholar 

  • Goodwin, G.M., De Souza, R.J., and Green, A.R. (1985). Presynaptic serotonin receptor mediated response in mice attenuated by antidepressant drugs and electroconvulsive shock. Nature, 317, 531–3.

    Article  CAS  PubMed  Google Scholar 

  • Grahame-Smith, D.G., and Green, A.R. (1974). The role of 5-hydroxytryptamine in the hyperactivity produced in rats by lithium and monoamine oxidase inhibition. Br. J. Pharmacol, 52, 19–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grahame-Smith, D.G., Green, A.R., and Costain, D.W. (1978). Mechanism of the antidepressant action of electroconvulsive therapy. Lancet, i, 254–6.

    Google Scholar 

  • Gray, J.A., and Green, A.R. (1986a). Increased GABAB receptor function in mouse frontal cortex after repeated administration of antidepressant drugs or electroconvulsive shocks. Br. J. Pharmacol, 92, 357–62.

    Article  Google Scholar 

  • Gray, J.A., and Green, A.R. (1986b). Evidence for increased GABAB receptor function in mouse frontal cortex following antidepressant administration. Br. J. Pharmacol, 89, 799.

    Google Scholar 

  • Green, A.R. (1986a). Changes in GAB A biochemistry and seizure threshold. Ann. NY Acad. Sci., 462, 105–19.

    Article  CAS  PubMed  Google Scholar 

  • Green, A.R. (1986b). Electroconvulsive therapy: a GABA-ergic mechanism? In Lloyd, K.G., Bartholini, G., and Morselli, P. (eds.) GABA and Mood Disorders. Raven, New York, 57–60.

    Google Scholar 

  • Green, A.R., and Goodwin, G.M. (1986). Antidepressants and monoamines: actions and interactions. In Deakin, J.F.W. (ed.), The Biology of Depression. Gaskell, London, 175–89.

    Google Scholar 

  • Green, A.R., Heal, D.J., and Goodwin, G.M. (1986). The effects of electro convulsive therapy in antidepressant drugs on monoamine receptors in rodent brain–similarities and differences. CIBA Foundation Symposium 123, ‘Antidepressants and Receptor Function’. Wiley, Chichester, 246–69.

    Google Scholar 

  • Green, A.R., and Nutt, D.J. (1983). Antidepressants. In Grahame-Smith, D.G., and Cowen, P.J. (eds.), Psychopharmacology 1, Part 1. Preclinical Psychopharmacology. Excerpta Medica, Amsterdam, 1–37.

    Google Scholar 

  • Green, A.R., and Nutt, D.J. (1985). Antidepressants. In Grahame-Smith, D.G., and Cowen, P.J. (eds.), Psychopharmacology 2, Part 1. Preclinical Psychopharmacology. Excerpta Medica, Amsterdam, 1–34.

    Google Scholar 

  • Heal, D.J., Philpot, J., O’Shaughnessy, K.H., and Davis, C.L. (1986). The influence of central noradrenergic function on 5-HT2-mediated head-twitch responses in mice: possible implications for the actions of antidepressant drugs. Psychopharmacology, 89, 414–20.

    Article  CAS  PubMed  Google Scholar 

  • Lerer, B., Weiner, R.D., and Belmaker, R.H. (eds.) (1984). ECT: Basic Mechanisms. (Biological Psychiatry: New Prospects), 1, Libbey, London.

    Google Scholar 

  • Lloyd, K.G., Thuvet, F., and Pile, A. (1985). Up-regulation of γ-aminobutyric acid (GABA)B binding sites in rat frontal cortex: a common action of repeated administration of different classes of antidepressants and electroshock. J. Pharmac. Exp. Ther., 235, 191–9.

    CAS  Google Scholar 

  • Oswald, I., Brezinova, V., and Dunleavy, D.L.F. (1972). On the slowness of action of tri-cyclic antidepressant drugs. Br. J. Psychiat., 120, 673–7.

    Article  CAS  Google Scholar 

  • Porter, R., Boch, G., and Clark, S. (1986). CIBA Foundation Symposium 123: Antidepressants and Receptor Function. Wiley, London.

    Google Scholar 

  • Raisman, R., Briley, M.S., and Langer, S.Z. (1979). Specific tricyclic antidepressant binding sites in rat brain. Nature, 281, 148–9.

    Article  CAS  PubMed  Google Scholar 

  • Rehavi, M., Paul, S.M., Skolnick, R., and Goodwin, F. (1980). Demonstration of specific high affinity binding sites for [3H]-imipramine in human brain. Life Sci., 76, 2273–9.

    Article  Google Scholar 

  • Shopsin, B., Friedman, E., and Gershon, S. (1976). Parachlorophenylalanine reversal of tranylcypromine effects in depressed patients. Arch. Gen. Psychiatry, 33, 811–19.

    Article  CAS  PubMed  Google Scholar 

  • Shopsin, B., Gershon, M., Goldstein, M., Friedman, E., and Wilks, S. (1975). Use of synthesis inhibitors in defining a role for biogenic amines during imipramine treatment in depressed patients. Psychopharmacol. Commun., 1, 239–49.

    CAS  PubMed  Google Scholar 

  • Sugrue, M.F. (1983). Chronic antidepressant therapy and associated changed in central monoaminergic functioning. Pharmac. Ther., 21, 1–33.

    Article  CAS  Google Scholar 

  • Swerdlow, M.R., Lee, D., Koob, G.F., and Vaccarino, F.J. (1985). The effects of chronic dietary lithium on behavioural indices of dopamine; denervation supersensitivity in the rat. J. Pharmacol Expt. Therap., 235, 325–9.

    Google Scholar 

  • Trieser, S.L., Cascio, C.S., O’Donohue, T.L., Thoa, N.B., Jackobowitz, D.M., and Kellar, K.J. (1981). Lithium increases serotonin release and decreases serotonin receptors in hippocampus. Science, 213, 1529–31.

    Article  Google Scholar 

  • Van Praag, H.M., Flentge, F., Korf, J., Dois, L.C.W., and Schut, T. (1973). A pilot study of the predictive value of the probenicid test in application of 5-hydroxytryptophan as an antidepressent. Psychopharmacologia. (Berl.), 33, 141–51.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1988 The Editors and the Contributors

About this chapter

Cite this chapter

Grahame-Smith, D.G. (1988). Neuropharmacological Adaptive Effects in the Actions of Antidepressant Drugs, ECT and Lithium. In: Briley, M., Fillion, G. (eds) New Concepts in Depression. Palgrave, London. https://doi.org/10.1007/978-1-349-09506-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-09506-3_1

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-09508-7

  • Online ISBN: 978-1-349-09506-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics