Skip to main content

UV Metal Semiconductor Metal Detectors

A robust choice for (Al,Ga)N based detectors

  • Conference paper
UV Solid-State Light Emitters and Detectors

Part of the book series: NATO Science Series ((NAII,volume 144))

Abstract

UV detection is interesting for combustion optimization, air contamination control, fire and solar blind rocket launching detection. Most of these applications require that UV detectors have a huge dynamic response between UV and the visible, and a very low dark current in the range of the UV flux measured. (Al,Ga)N alloys present a large direct bandgap in this range and therefore can be used as an active region in such detectors. To take advantage of the large Schottky barrier, the good alloy quality, and to avoid any doping problems, we have developed MSM photodetectors. High quality material has been grown with MOCVD and MBE on sapphire substrates. Stress management is employed for aluminum contents up to 65% to reduce crack density. This is correlated with non-ideal features like dark current, sub-bandgap response and non-linearity between photocurrent and optical flux. The spectral selectivity between UV and visible reaches five orders of magnitude. A geometry of inter-digitized fingers is optimized in regards to the peak response. The Schottky barrier and a dielectric passivation result in dark currents lower than 1 fA up to 30 V for a 100 x 100 µm2 pixel. Consequently, detectivity is mainly limited by shot noise and corresponds to a noise of 500 photons per second and per pixel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Gil, Group III Nitride Semiconductor Compounds: Physics and applications (Clarendon Press, Oxford, 1998).

    Google Scholar 

  2. Y. A. Goldberg, Semicond. Sci. Technol. 14, R41 (1999).

    Article  ADS  Google Scholar 

  3. E. Monroy, F. Calle, E. Muñoz, and F. Omnès, Appl. Phys. Lett. 74, 3401 (1999).

    Article  ADS  Google Scholar 

  4. C. Pernot, A. Hirano, M. Iwaya, T. Detchprohm, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys. Part 2, 39, L387 (2000).

    Article  ADS  Google Scholar 

  5. F. Binet, J.Y. Duboz, E. Rosencher, F. Scholz, and V. Härle, Appl. Phys. Lett. 69, 1202 (1996).

    Article  ADS  Google Scholar 

  6. E. Muñoz, E. Monroy, J.A. Garrido, I. Izpura, F.J Sanchez, M. A. Sanchez-Garcia, E. Caltera, B. Beaumont, and P. Gibart, Appl. Phys. Lett. 71, 870 (1997).

    Article  ADS  Google Scholar 

  7. J. A. Garrido, E. Monroy, I. Izpura, and E. Muñoz, Semicond. Sci. Technol. 13, 563 (1998).

    Article  ADS  Google Scholar 

  8. J. L. Reverchon, M. P. Poisson, and J. Y. Duboz, Semicond. Sci. Technol. 16, 720 (2001).

    Article  ADS  Google Scholar 

  9. B. Beaumont and P. Gibart, Proc. SPIE 3725, 2 (1999).

    Article  ADS  Google Scholar 

  10. B. Beaumont, J. P. Faune, E. Frayssinet, E. Aujol, and P. Gibard, this volume.

    Google Scholar 

  11. V. Kirchner, H. Heinke, D. Hommel, J. Z. Domagala, and M. Leszczynski, Appl. Phys. Lett. 77, 1434 (2000).

    Article  ADS  Google Scholar 

  12. Nikolaev, I. Nikitina, A. Zubrilov, M. Mynbaeva, Y. Melnik, and V. Dmitriev, MRS Internet J. Nitride Semicond. Res. 5S1, W6.5 (2000).

    Google Scholar 

  13. L. J. Schowalter, Y. Shusterman, R. Wang, I. Bhat, G. Arunmozhi, and G. A. Slack, Appt. Phys. Lett. 76, 985 (2000).

    Article  ADS  Google Scholar 

  14. F. Omnès, N. Marenco, B. Beaumont, Ph. De Mierry, E. Monroy, F. Calle, and E. Muñoz, J. Appt. Phys. 86, 5286 (1999).

    Article  ADS  Google Scholar 

  15. F. Semond, P. Lorenzini, N. Grandjean, and J. Massies, Appl. Phys. Lett. 78, 335 (2001).

    Article  ADS  Google Scholar 

  16. N. Grandjean, J. Massies, P. Vennéguès, M. Leroux, F. Demongeot, M. Renucci, and J. Frandon, J. Appt. Phys. 83, 1379 (1997).

    Article  ADS  Google Scholar 

  17. M. Mosca, J.- L. Reverchon, N. Grandjean, F. Omnès, J.-Y. Duboz, I. Ribet, and M. Tauvy, Mat. Res. Soc. Symp. Proc. Vol 764, Material Research Society (2003).

    Google Scholar 

  18. C. M. Jeon and J.- L. Lee, Appl. Phys. Lett. 82, 4301 (2003).

    Article  ADS  Google Scholar 

  19. J. C. Carrano, T. Li, D. L. Brown, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, Appl. Phys. Lett. 73, 2405 (1998).

    Article  ADS  Google Scholar 

  20. S. W. Seo, K. K. Lee, Sangbeom Kang, S. Huang, William A. Doolittle, N. M. Jokerst, and A. S. Brown, Appl. Phys. Lett. 79, 1372 (2001).

    Article  ADS  Google Scholar 

  21. J. Y. Duboz, J. L. Reverchon, D. Adam, B. Damilano, N. Grandjean, F. Semond, and J. Massies, J. Appt. Phys. 92, 5602 (2002).

    Article  ADS  Google Scholar 

  22. N. M. Wong, U. Chowdhury, C. L. Collins, B. Yang, J. C. Denyszyn, K. S. Kim, J. C. Campbell, and R. D. Dupuis, Phys. Stat. Sol. (a), 188, 333 (2001).

    Article  ADS  Google Scholar 

  23. L. Hirsch, P. Moretto, J.-Y. Duboz, J.-L. Reverchon, B. Damilano, N. Grandjean, F. Semond, and J. Massies, J. Appt. Phys. 91, 6095 (2002).

    Article  ADS  Google Scholar 

  24. A. Cremades, M. Albrecht, J. Krinke, R. Dimitrov, M. Stutzmann, and H. P. Strunk, J. Appt. Phys. 87, 2357 (2000).

    Article  ADS  Google Scholar 

  25. F. Semond, N. Antoine-Vincent, N. Schnell, M. Leroux, J. Massies, P. Disseix, J. Leymarie, and A. Vasson, Phys. Stat. Sol. (a), 183, 163 (2001).

    Article  ADS  Google Scholar 

  26. E. Monroy, F. Calle, E. Muñoz, F. Omnes, B. Beaumont, and P. Gibart, J. Elect. Mat., 28, 240 (1998).

    Article  ADS  Google Scholar 

  27. G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, U. K. Mishra, and E. J. Tarsa, Appl. Phys. Lett. 75, 247 (1999).

    Article  ADS  Google Scholar 

  28. V. Adivarahan, G. Simin, G. Tamulaitis, R. Srinivasan, J. Yang, M. Asif Khan, M. S. Shur, and R. Gaska, Appl. Phys. Lett. 79, 1903 (2001).

    Article  ADS  Google Scholar 

  29. N. Biyikli, O. Aytur, I. Kimukin, T. Tut, and E. Ozbay, Appl. Phys. Lett. 81, 3272 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Reverchon, JL. et al. (2004). UV Metal Semiconductor Metal Detectors. In: Shur, M.S., Žukauskas, A. (eds) UV Solid-State Light Emitters and Detectors. NATO Science Series, vol 144. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2103-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2103-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2035-3

  • Online ISBN: 978-1-4020-2103-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics