Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 141))

  • 209 Accesses

Abstract

It is shown that 5D Kaluza-Klein theory stabilized by an external bulk scalar field may solve the discrepant laboratory G measurements. This is achieved by an effective coupling between gravitation and the geomagnetic field. Experimental considerations are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Luo and Z. K. Hu, (2000), Class. Quantum Gray. 17, 2351.

    Article  ADS  MATH  Google Scholar 

  2. G. T. Gillies, Rep. Prog. Phys. 60, (1997), 151, and references therein.

    Article  ADS  Google Scholar 

  3. V. N. Melnikov, gr-qc/9903110.

    Google Scholar 

  4. J.-P. Mbelek and M. Lachièze-Rey, (2003), A and A 397, 803.

    ADS  MATH  Google Scholar 

  5. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields ( Addison-Wesley Publishing Company Inc., Reading, Massachusetts, 1959 ), pp. 289–293.

    Google Scholar 

  6. J.-P. Mbelek and M. Lachièze-Rey, gr-qc/0012086, and references therein.

    Google Scholar 

  7. A. Lichnerowicz, Théories relativistes de la gravitation et de l’électromagnétisme, ( Masson et Cbe, Paris, France, 1955 ), pp. 201–206.

    Google Scholar 

  8. W. Michaelis, H. Haars and R. Augustin, (1995/96), metrologia 32, 267.

    Google Scholar 

  9. E. R. Cohen and B. N. Taylor, (1987), Rev. Mod. Phys. 59, 1121.

    Article  ADS  Google Scholar 

  10. P. J. Mohr and B. N. Taylor, (2000), Rev. Mod. Phys. 72, 351.

    Article  ADS  MATH  Google Scholar 

  11. M. G. Lloyd, (1909), Terrestrial Magnetism and Atmospheric Electricity 14, 67.

    Article  ADS  Google Scholar 

  12. J.-P. Mbelek and M. Lachièze-Rey, (2002), Gray. Cosmol. 8, 331.

    ADS  MATH  Google Scholar 

  13. P. R. Bevington, Data reduction and error analysis for the physical sciences,(McGraw-Hill Book Company, New York, 1969), pp. 200–203 and pp. 317–323.

    Google Scholar 

  14. J. H. Gundlach and S. M. Merkowitz, (2000), Phys. Rev. Lett. 85, 2869.

    Article  ADS  Google Scholar 

  15. M. P. Fitzgerald and T. R. Armstrong, 1995, IIIE Trans. Instrum. Meas. 44, 494.

    Article  ADS  Google Scholar 

  16. M. P. Fitzgerald and T. R. Armstrong, (1999), Meas. Sci. Technol. 10, 439.

    Article  ADS  Google Scholar 

  17. J. Luo et al.,(1998), Phys. Rev. D59, 042001.

    ADS  Google Scholar 

  18. C. H. Bagley and G. G. Luther, (1997), Phys. Rev. Lett. 78, 3047.

    Article  ADS  Google Scholar 

  19. G. G. Luther and W. Towler, (1982), Phys. Rev. Lett. 48, 121.

    Article  ADS  Google Scholar 

  20. P. R. Heyl and P. Chrzanowski, (1942), J. Res. Nat. Bur. Standards 29, 1.

    Article  Google Scholar 

  21. J. P. Schwarz et al.,(1998), Science 282, 2230.

    Article  ADS  Google Scholar 

  22. B. Hubler, A. Cornaz and W. Kündig, (1995), Phys. Rev. D51, 4005.

    Article  ADS  Google Scholar 

  23. A. Cornaz, B. Hubler and W. Kündig, (1994), Phys. Rev. Lett. 72, 1152.

    Article  ADS  Google Scholar 

  24. J. Schurr, F. Nolting and W. Kündig, (1998), Phys. Rev. Lett. 80, 1142.

    Article  ADS  Google Scholar 

  25. F. Nolting, J. Schurr, S. Schlamminger and W. Kündig, (1999), Meas. Sci. Technol. 10, 487.

    Article  ADS  Google Scholar 

  26. J. Renner, in Determination of Gravity Constant and Measurement of Certain Fine Gravity Effects, Y. D. Boulanger and M. U. Sagitov (Eds.), ( National Aeronautics and Space Administration, Washington, 1974 ), pp. 26–31.

    Google Scholar 

  27. T. J. Quinn, C. C. Speake, S. J. Richman, R. S. Davis and A. Picard, (2001), Phys. Rev. Lett. 87, 11 1101.

    Google Scholar 

  28. S. J. Richman, T. J. Quinn, C. C. Speake and R. S. Davis, (1999), Meas. Sci. Technol. 10, 460.

    Article  ADS  Google Scholar 

  29. J. -Cl. Dousse and Ch. Rhême, (1987), Am. J. Phys. 55, 706.

    Article  ADS  Google Scholar 

  30. L. Facy and C. Pontikis, (1971), Comptes Rendus des Scéances de l’Académie des Sciences de Paris 272, Série B, 1397.

    Google Scholar 

  31. U. Kleinevoss, H. Meyer, A. Schumacher and S. Hartmann, (1999), Meas. Sci. Technol. 10, 492.

    Article  ADS  Google Scholar 

  32. H. de Boer, H. Haars and W. Michaelis, (1987), metrologia 24, 171.

    Google Scholar 

  33. O. V. Karagioz, V. P. Izmaylov and G. T. Gillies, (1998), Gray. Cosmol. 4, 239.

    ADS  MATH  Google Scholar 

  34. M. U. Sagitov et al.,(1979), Dok. Acad. Nauk SSSR 245, 567.

    Google Scholar 

  35. M. A. Zumberge et al.,(1990), J. Geophys. Res. 95, 15483.

    Google Scholar 

  36. P. Baldi et al.,(2001), Phys. Rev. D64, 082001.

    Google Scholar 

  37. G. Müller et al.,(1990), Geophys. J. Int. 101, 329; M. A. Zumberge et al.,(1991), Phys. Rev. Lett. 67, 3051

    Google Scholar 

  38. M. Oldham, F. J. Lowes and R. J. Edge, (1993), Geophys. J. Int. 113, 83

    Article  ADS  Google Scholar 

  39. J. K. Hoskins et al.,(1985), Phys. Rev. D32, 3084

    ADS  Google Scholar 

  40. Y. T. Chen et al.,(1984), Proc. R. Soc. Lond. A394, 47

    Article  ADS  Google Scholar 

  41. R. D. Rose et al.,(1969), Phys. Rev. Lett. 23, 655

    Article  ADS  Google Scholar 

  42. G. I. Moore et al.,(1988), Phys. Rev. D38, 1023

    ADS  Google Scholar 

  43. F. D. Stacey et al.,(1987), Rev. Mod. Phys. 59, 157

    Article  ADS  Google Scholar 

  44. X. Yang et al.,(1991), Chinese Phys. Lett., 8, 329

    Article  ADS  Google Scholar 

  45. M. S. Saulnier and D. Frisch, (1989), Am. J. Phys., 57, 417

    Article  ADS  Google Scholar 

  46. G. J. Tuck et al.,in The Fith Marcel Grossmann Meeting,D. G. Blair and M. J. Buckingham (Eds.), (World Scientific, Singapore, 1989), pp. 1605–1612

    Google Scholar 

  47. K. Kuroda and H. Hirakawa, (1985), Phys. Rev. D32, 342.

    ADS  Google Scholar 

  48. St. Schlamminger, E. Holzschuh and W. Kündig, (2002), Phys. Rev. Lett. 89, 16 1102.

    Google Scholar 

  49. R. Newman, in J. Pullin (Ed.), gr-qc/0303027.

    Google Scholar 

  50. P. S. Wesson and J. Ponce de Leon, (1995), A and A 294, 1

    ADS  Google Scholar 

  51. J. Ponce de Leon, (2002), Gray. Cosmol. 8, 272.

    ADS  MATH  Google Scholar 

  52. J.-P. Mbelek and M. Lachièze-Rey, to appear.

    Google Scholar 

  53. K. Kuroda, (1995), Phys. Rev. Lett. 75, 2796.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Mbelek, J.P. (2004). 5D gravity and the discrepant G measurements. In: de Sabbata, V., Gillies, G.T., Melnikov, V.N. (eds) The Gravitational Constant: Generalized Gravitational Theories and Experiments. NATO Science Series, vol 141. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2242-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2242-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1956-2

  • Online ISBN: 978-1-4020-2242-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics