Skip to main content

Auxin Signal Transduction

  • Chapter
Plant Hormones

Abstract

One of the many challenges in plant hormone research is to elucidate the molecular mechanisms of hormone action. The current working model for the auxin signal transduction pathway is based largely on hormone response pathways described in other systems. In this general model, the pathway is activated when receptive cells perceive auxin. Receptors at the cell surface and/or within the cell are thought to recognize and bind auxin with specificity and high affinity. Receptor binding would then trigger a series of biochemical and molecular events that would ultimately lead to observable physiological growth responses, such as cell elongation, division and/or differentiation. Over the past decade, there have been major advances in our understanding of the molecular mechanisms governing auxin action, through the identification of several key regulatory components of the pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel S, Oeller PW, Theologis A (1994) Early auxin-induced genes encode short-lived nuclear proteins. Proc Natl Acad Sci USA 91: 326-330

    Article  CAS  PubMed  Google Scholar 

  2. Chen J-G (2001) Dual auxin signaling pathways control cell elongation and division. J Plant Growth Regul 20:255-264

    Article  CAS  Google Scholar 

  3. Chen J-G, Ullah, H, Young JC, Sussman MR, Jones AM (2001) ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev 15: 902-911

    Article  CAS  PubMed  Google Scholar 

  4. Cope GA, Suh GS, Aravind L, Schwarz SE, Zipursky SL, Koonin EV, Deshaies RJ (2002) Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298: 608-611

    Article  CAS  PubMed  Google Scholar 

  5. DeLong A, Mockaitis K, Christensen S (2002) Protein phosphorylation in the delivery of and response to auxin signals. Plant Mol Biol 49: 285-303

    Article  CAS  PubMed  Google Scholar 

  6. Deshaies RJ (1999) SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15: 435-467

    Article  CAS  PubMed  Google Scholar 

  7. Dharmasiri N, Dharmasiri S, Jones AM, Estelle M (2003) Auxin action in a cell-free system. Curr Biol. 13: 1418-1422

    Article  CAS  PubMed  Google Scholar 

  8. Gagne JM, Downes BP, Shiu SH, Durski AM, Vierstra RD (2002) The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci U S A 99: 11519-11524

    Article  CAS  PubMed  Google Scholar 

  9. Gray WM, Estelle M (2000) Function of the ubiquitin-proteasome pathway in auxin response. Trends Biochem Sci 25: 133-138

    Article  CAS  PubMed  Google Scholar 

  10. Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414: 271-276

    Article  CAS  PubMed  Google Scholar 

  11. Guilfoyle TJ (1999) Auxin-regulated genes and promoters. In KL Libbenga, M Hall, PJJ Hooykaas, eds, Biochemistry and Molecular Biology of Plant Hormones, Elsevier Publishing Co, Leiden, The Netherlands, pp 423-459

    Chapter  Google Scholar 

  12. Guilfoyle TJ, Hagen G (2001) Auxin response factors. J Plant Growth Regul 20: 281-291

    Article  CAS  Google Scholar 

  13. Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49: 373-385

    Article  CAS  PubMed  Google Scholar 

  14. Hellmann H, Estelle M (2002) Plant development: regulation by protein degradation. Science 297: 793-797

    Article  CAS  PubMed  Google Scholar 

  15. Hellmann H, Hobbie L, Chapman A, Dharmasiri S, Dharmasiri N, del Pozo C, Reinhardt D, Estelle M (2003) Arabidopsis AXR6 encodes CUL1 implicating SCF E3 ligases in auxin regulation of embryogenesis. EMBO J 22: 3314-3325

    Article  CAS  PubMed  Google Scholar 

  16. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67: 425-479

    Article  CAS  PubMed  Google Scholar 

  17. Hobbie L, McGovern M, Hurwitz LR, Pierro A, Liu NY, et al. (2000) The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin response and early development. Development 127: 23-32

    CAS  PubMed  Google Scholar 

  18. Hsieh H-L, Okamoto H, Wang M, Ang L-H, Matsui M, Goodman H, Deng XW (2000) Fin219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev 14: 1958-1970

    CAS  PubMed  Google Scholar 

  19. Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF- [kappa]B activity. Annu Rev Immunol 18: 621-663

    Article  CAS  PubMed  Google Scholar 

  20. Kepinski S, Leyser O (2002) Ubiquitination and auxin signaling: a degrading story. Plant Cell 14: S81-S95

    CAS  PubMed  Google Scholar 

  21. Knauss S, Rohrmeier T, Lehle L (2003) The auxin-induced maize gene ZmSAUR2 encodes a short-lived nuclear protein expressed in elongating tissues. J Biol Chem 278: 23936-23943

    Article  CAS  PubMed  Google Scholar 

  22. Leyser O (2002) Molecular genetics of auxin signaling. Annu Rev of Plant Biol 53: 377-398

    Article  CAS  Google Scholar 

  23. Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49: 387-400

    Article  CAS  PubMed  Google Scholar 

  24. Mockaitis K, Howell SH (2000) Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J 24: 785-796

    Article  CAS  PubMed  Google Scholar 

  25. Nakazawa M, Yabe N, Ichikawa T, Yamamoto Y, Yoshizumi T, Hasunuma K, Matsui M (2001) DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. Plant J 25: 213-221

    Article  CAS  PubMed  Google Scholar 

  26. Napier RM (2001) Models of auxin binding. J Plant Growth Regul 20: 244-254

    Article  CAS  Google Scholar 

  27. Napier RM, David KM, Perrot-Rechenmann C (2002) A short history of auxin-binding proteins. Plant Mol Biol 49: 339-348

    Article  CAS  PubMed  Google Scholar 

  28. Ouellet F, Overvoorde PJ, Theologis A (2001) IAA17/AXR3. Biochemical insight into an auxin mutant phenotype. Plant Cell 13: 829-842

    Article  CAS  PubMed  Google Scholar 

  29. Reed JW (2001) Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci 6: 420-425

    Article  CAS  PubMed  Google Scholar 

  30. Rogg LE, Bartel B (2001) Auxin signaling: derepression through regulated proteolysis. Dev Cell 1: 595-604

    Article  CAS  PubMed  Google Scholar 

  31. Scherer GFE (2002) Secondary messengers and phospholipase A2 in auxin signal transduction. Plant Mol Biol 49: 357-372

    Article  CAS  PubMed  Google Scholar 

  32. Schwechheimer C, Deng X (2001) COP9 signalosome revisited: a novel mediator of protein degradation. Trends Cell Biol 11: 420-426

    Article  CAS  PubMed  Google Scholar 

  33. Staswick PE, Tiryaki I, Rowe RL (2002) Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14: 1405-1415

    Article  CAS  PubMed  Google Scholar 

  34. Swarup R, Parry G, Graham N, Allen T, Bennett M (2002) Auxin cross-talk: integration of signaling pathways to control plant development. Plant Mol Biol 49: 411-426

    Article  CAS  PubMed  Google Scholar 

  35. Tian Q, Reed JW (2001) Molecular links between light and auxin signaling pathways. J Plant Growth Regul 20: 274-280

    Article  CAS  Google Scholar 

  36. Tiwari SB, Wang X-J, Hagen G, Guilfoyle TJ (2001) AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 13: 2809-2822

    Article  CAS  PubMed  Google Scholar 

  37. Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15: 533-543

    Article  CAS  PubMed  Google Scholar 

  38. Tiwari SB, Hagen G, Guilfoyle T (2004) Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell, in press

    Google Scholar 

  39. Ullah H, Chen JG, Temple B, Boyes DC, Alonso JM, Davis KR, Ecker JR, Jones AM (2003) The beta-subunit of the Arabidopsis G protein negatively regulates auxininduced cell division and affects multiple developmental processes. Plant Cell 15: 393-409

    Article  CAS  PubMed  Google Scholar 

  40. Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds auxin response elements. Science 276: 1865-1868

    Article  CAS  PubMed  Google Scholar 

  41. Venis MA, Napier RM (1995) Auxin receptors and auxin binding proteins. Crit Rev Plant Sci 14: 27-47

    Article  CAS  Google Scholar 

  42. Waller F, Furuya M, Nick P (2002) OsARF1, an auxin response factor from rice is auxin-regulated and classifies as a primary auxin responsive gene. Plant Mol Biol 50: 415-425

    Article  CAS  PubMed  Google Scholar 

  43. Worley CK, Zenser N, Ramos J, Rouse D, Leyser O, Theologis A, Callis J (2000) Degradation of Aux/IAA proteins is essential for normal auxin signalling. Plant J 21: 553-562

    Article  CAS  PubMed  Google Scholar 

  44. Xie Q, Frugis G, Colgan D, Chua N-H (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14: 3024-3036

    Article  CAS  PubMed  Google Scholar 

  45. Xie Q, Guo HS, Dallman G, Fang S, Weissman AM, Chua N-H (2002) SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419: 167-170

    Article  CAS  PubMed  Google Scholar 

  46. Yang T, Poovaiah BW (2000) Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action. J Biol Chem 275: 3137-3143

    Article  CAS  PubMed  Google Scholar 

  47. Zenser N, Ellsmore A, Leasure C, Callis J (2001) Auxin modulates the degradation rate of Aux/IAA proteins. Proc Natl Acad Sci U S A 98: 11795-11800

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gretchen Hagen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hagen, G., Guilfoyle, T.J., Gray, W.M. (2010). Auxin Signal Transduction. In: Davies, P.J. (eds) Plant Hormones. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2686-7_14

Download citation

Publish with us

Policies and ethics