Skip to main content

Signatures of Large Extra Dimensions

  • Conference paper
Structure and Dynamics of Elementary Matter

Part of the book series: NATO Science Series ((NAII,volume 166))

  • 332 Accesses

Abstract

String theory suggests modifications of our spacetime such as extra dimensions and the existence of a mininal length scale. In models with addidional dimensions, the Planck scale can be lowered to values accessible by future colliders. Effective theories which extend beyond the standart-model by including extra dimensions and a minimal length allow computation of observables and can be used to make testable predictions. Expected effects that arise within these models are the production of gravitons and black holes. Furthermore, the Planck-length is a lower bound to the possible resolution of spacetime which might be reached soon.

This is a summary of a talk given at the NATO Advanced Study Institute in Kemer, Turkey, Oct. 2003.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Arkani-Hamed, S. Dimopoulos andG. Dvali, Phys. Lett. B 429,263–272 (1998)

    Google Scholar 

  2. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B 436, 257–263 (1998)

    Google Scholar 

  3. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Rev. D 59, 086004 (1999).

    Google Scholar 

  4. L. Randall and R. Sundrum, Phys. Rev. Lett. 83 3370–3373 (1999) [hep-ph/9905221].

    Google Scholar 

  5. L. Randall and R. Sundrum, Phys. Rev. Lett. 83 4690–4693 (1999) [hep-th/9906064].

    Google Scholar 

  6. T. Appelquist, H. C. Cheng and B. A. Dobrescu, Phys. Rev. D 64, 035002 (2001)

    Google Scholar 

  7. C. Macesanu, C. D. McMullen and S. Nandi, Phys. Rev. D 66, 015009 (2002)

    Google Scholar 

  8. T. G. Rizzo, Phys. Rev. D 64, 095010 (2001).

    Google Scholar 

  9. V.A. Rubakov, Phys. Usb. 44, 871 (2001); Y.A. Kubyshin, Lectures given at the XI. School”Particles and Cosmology”, Baksam, Russia, April 2001.

    Google Scholar 

  10. I. Antoniadis, Phys. Lett. B 246, 377–384 (1990)

    Google Scholar 

  11. I. Antoniadis and M. Quiros, Phys. Lett. B 392, 61 (1997)

    Google Scholar 

  12. K.R. Dienes, E. Dudas and T. Gherghetta, Nucl. Phys. B537 47 (1999).

    Google Scholar 

  13. J. C. Long and J. C. Price, arXiv:hep-ph/0303057; C. D. Hoyle et al, Phys. Rev. Lett. 86, 1418 (2001)

    Google Scholar 

  14. J. C.iaverini etal, Phys. Rev. Lett. 90, 151101 (2003).

    Google Scholar 

  15. Tao Han, J. D. Lykken and Ren-Jie Zhang Phys. Rev. D59 105006 (1999)

    Google Scholar 

  16. J. L. Hewett, Phys. Rev. Lett. 82, 4765 (1999)

    Google Scholar 

  17. G. F. Giudice, R. Rattazzi and J. D. Wells, Nucl. Phys. B 544, 3 (1999).

    Google Scholar 

  18. J. Hewett and M. Spiropulu, Ann. Rev. Nucl. Part. Sci. 52, 397–424, (2002)

    Google Scholar 

  19. Y. Uehara, Mod. Phys. Lett. A 17,1551 (2002);

    Google Scholar 

  20. E. A. Mirabelli, M. Perelstein and M. E. Peskin, Phys. Rev. Let. 82 2236–2239 (1999).

    Google Scholar 

  21. R. C. Myers and M. J. Perry, Ann. Phys. 172, 304–347 (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. R. Emparan, Phys. Rev. D64, 024025 (2001)

    Google Scholar 

  23. S. N. Solodukhin, Phys.Lett. B 533,153–161, (2002)

    Google Scholar 

  24. A. Jevicki and J. Thaler, Phys.Rev. D 66, 024041 (2002)

    Google Scholar 

  25. D. M. Eardley and S. B. Giddings, Phys. Rev. D 66, 044011 (2002).

    Google Scholar 

  26. P.C. Argyres, S. Dimopoulos and J. March-Russell, Phys. Lett. B 441 96 (1998) [hep-th/9808138]

    Google Scholar 

  27. S. B. Giddings, Gen. Rel. Grav. 34, 1775 (2002)

    Google Scholar 

  28. S. Hossenfelder, S. Hofmann, M. Bleicher and H. Stüocker, Phys. Rev. D 66 101502 (2002);

    Google Scholar 

  29. R. Casadio and B. Harms, Phys.Rev. D 64, 024016 (2001)

    Google Scholar 

  30. R. Casadio and B. Harms, Phys.Lett. B 487 209–214 (2000).

    Google Scholar 

  31. Y. Aharonov, A. Casher and S. Nussinov, Phys. Lett. 191 B, 51 (1987)

    Google Scholar 

  32. T. Banks and M. O’Loughlin, Phys. Rev. D 47, 540 (1993)

    Google Scholar 

  33. T. Banks, M. O’Loughlin and A. Strominger, Phys. Rev. D 47, 4476 (1993)

    Google Scholar 

  34. J. D. Barrow, E. J. Copeland and A. R. Liddle, Phys. Rev. D 46, 645 (1992)

    Google Scholar 

  35. S. Alexeyev et al Class. Quant. Grav. 19, 4431–4444 (2002).

    Google Scholar 

  36. D. J. Gross and P. F. Mende, Nucl. Phys. B 303 (1988) 407.

    Google Scholar 

  37. D. Amati, M. Ciafaloni and G. Veneziano, Phys. Lett. B 216 (1989)41

    Google Scholar 

  38. E. Witten, Phys. Today, 49 (1996) 24.

    Google Scholar 

  39. L. J. Garay, Int. J. Mod. Phys. A 10 (1995) 145; A. Kempf, [arXiv:hep-th/9810215].

    Google Scholar 

  40. A. Kempf and G. Mangano, Phys. Rev. D 55 (1997) 7909

    Google Scholar 

  41. I. Dadic, L. Jonke and S. Meljanac, Phys. Rev. D 67 (2003) 087701;

    Google Scholar 

  42. J. Martin and R. H. Brandenberger, Phys. Rev. D 63 (2001)123501

    Google Scholar 

  43. F. Brau, J. Phys. A 32 (1999) 7691

    Google Scholar 

  44. R. Akhoury and Y. P. Yao, Phys. Lett. B 572, 37 (2003).

    Google Scholar 

  45. S. Hossenfelder et al, Phys. Lett. B 575 (2003), 84.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Hossenfelder, S., Bleicher, M., Stöcker, H. (2004). Signatures of Large Extra Dimensions. In: Greiner, W., Itkis, M.G., Reinhardt, J., Güçlü, M.C. (eds) Structure and Dynamics of Elementary Matter. NATO Science Series, vol 166. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2705-5_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2705-5_48

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2446-7

  • Online ISBN: 978-1-4020-2705-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics