Skip to main content

Part of the book series: Advances in Natural and Technological Hazards Research ((NTHR,volume 21))

  • 411 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahern, F.J., Goldammer, J.G., and Justice, C.O. (Eds.). (2001). Global and regional vegetation fire monitoring from space: Planning a coordinated international effort. The Hague, Netherlands: SPB Academic Publishing.

    Google Scholar 

  • Albini, F. (1976). Estimating wildfire behavior and effects. Forest Service General Technical Report INT-30. Washington, DC: USDA Forest Service.

    Google Scholar 

  • Anderson, H.E. (1982). Aids to determining fuel models for estimating fire behavior. General Technical Report INT-122. Ogden, UT: USDA Forest Service, Intermountain Forest and Range Experiment Station. Brown, J.K. (1974).

    Google Scholar 

  • Handbook for inventorying downed woody material. General Technical Report INT-16. Ogden, UT: USDA Intermountain Forest and Range Experiment Station.

    Google Scholar 

  • Brown, J.K., Oberheu, R.D., & Johnston, C.M. (1982). Handbook for inventorying surface fuels and biomass in the interior West. General Technical Report INT-129. Ogden, UT: USDA Forest Service, Intermountain Forest and Range Experiment Station.

    Google Scholar 

  • Brown, J.K., and Bevins, C.D. (1986). Surface fuel loadings and predicted fire behavior for vegetation types in the northern Rocky Mountains. Research Note INT-358. Ogden, UT: USDA Forest Service, Intermountain Forest and Range Experiment Station.

    Google Scholar 

  • Brown, J.K., & See, T.E. (1981). Downed dead woody fuel and biomass in the northern Rocky Mountains. General Technical Report INT-117. Ogden, UT: USDA Forest Service, Intermountain Forest and Range Experiment Station.

    Google Scholar 

  • Burgan, R.E., Klaver, R.W. & Klaver, J.M. (1998). Fuel models and fire potential from satellite and surface observations. International Journal of Wildland Fire 8: pp. 159-170.

    Article  Google Scholar 

  • Cahoon, D. R., et al. (1991). The Great Chinese Fire of 1987: A view from space. In J. S. Levine (Ed.), Global biomass burning (pp. 61-66). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Cahoon, D.R., et al. (1994). Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia. Journal of Geophysical Research 99, no. D9: p. 1862-7.

    Article  Google Scholar 

  • Chuvieco, E., &. Congalton, R.G. (1989). Application of remote sensing and geographical information systems to forest fire hazard mapping. Remote Sensing of Environment 29: pp. 147-159.

    Article  Google Scholar 

  • Cohen, W.B. (1991). Response of vegetation indices to changes in three measures of leaf water stress. Photogrammetric Engineering & Remote Sensing 57, no. 2: pp. 195-202.

    Google Scholar 

  • Cooperative Institute for Meteorological Satellite Studies. (2001). The experimental wildfire ABBA fire product. Madison, WI: Space Science and Engineering Center, University of Wisconsin-Madison. Retrieved April 14, 2004 from the World Wide Web: http://cimss.ssec.wisc.edu/goes/burn/abba.html.

  • Farnsworth, A. (1998). Honorable mention, prescribed fire. Fire Management Today 60, no. 4. Fort Collins, CO: U.S. Department of Agriculture, U.S. Forest Service, Fire and Aviation Management. Retrieved April 30, 2004, from the World Wide Web: http://www.fs.fed.us/fire/fmt/contest/hm_winners.html.

  • FIRESCAN Science Team. (1994). Fire in boreal ecosystems of Eurasia: First results of the Bor Forest Island Fire Experiment. Fire Research Campaign Asia-North (FIRESCAN). World Resource Review 6: pp. 499-523.

    Google Scholar 

  • FIREWISE. (2004). FIREWISE Home. Retrieved April 14, 2004 from the World Wide Web: http://www.firewise.org/.

  • Food and Agricultural Organization of the United Nations. (1985). The forest resources of the ECE region (Europe, the USSR, North America). ECE/FAO/27. Geneva: FAO, United Nations.

    Google Scholar 

  • Food and Agricultural Organization of the United Nations, Committee On Forestry. (2001). Agenda Item 8(b) of the Provisional Agenda, Fifteenth Session, Results of the Global Forest Resources Assessment 2000, Rome, Italy, 12-16 March 2001, COFO-2001/6 Supp.1.

    Google Scholar 

  • Fosberg, M.A., Stocks, B.J., and Lynham, T.J. (1996). Risk analysis in strategic planning: fire and climate change in the boreal forest. In J.G. Goldammer and V.V. Furyaev (Eds.), Fire in Ecosystems of Boreal Eurasia (pp. 495-504). Dordrecht: Kluwer Acad. Publishers.

    Google Scholar 

  • Gates, D.M., et al. (1965). Spectral properties of plants. Applied Optics 4: pp. 11-20.

    Article  Google Scholar 

  • Goldammer, J.G. and Di, X.. (1990). The role of fire in the montane-boreal coniferous forest of Daxinganling, Northeast China: A preliminary mode. In J.G. Goldammer and M. J. Jenkins (Eds.), Fire in ecosystem dynamics. Mediterranean and northern perspectives (pp. 175-184). The Hague, Netherlands: SPB Academic Publishing.

    Google Scholar 

  • Hardy, C.C., & Burgan, R.E. (1999). Evaluation of NDVI for monitoring live moisture in three vegetation types of the western U.S. Photogrammetric Engineering & Remote Sensing 65, no. 5: pp. 603-610.

    Google Scholar 

  • Jensen, J. (2000). Remote Sensing of the Environment. New Jersey: Prentice Hall.

    Google Scholar 

  • Keane, R.E., et al. (2000). Mapping vegetation and fuels for fire management on the Gila National Forest Complex, New Mexico. General Technical Report RMRS-46-CD. Missoula, MT: USDA Forest Service, Rocky Mountain Research Station.

    Google Scholar 

  • Keane, R.E., Burgan, R., & van Wagtendonk, J. (2001). Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling. International Journal of Wildland Fire 10: pp. 301-319.

    Article  Google Scholar 

  • Kurz, W.A., et al. (1994). Global climate change: disturbance regimes and biospheric feedbacks of temperate and boreal forests. In G.M. Woodwell and F. Maackenzie (Eds.), Biotic feedbacks in the global climate system: will the warming speed the warming? (pp. 119-133). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Kuusela, K. (1990). The dynamics of boreal coniferous forests. Helsinki, Finland: The Finnish National Fund for Research and Development (SITRA).

    Google Scholar 

  • Kuusela, K. (1992) Boreal forestry in Finland: A fire ecology without fire. Unasylva 43, no. 170: p. 22.

    Google Scholar 

  • National Academy of Sciences. (1991). A safer future: Reducing the impacts of natural disasters.

    Google Scholar 

  • Washington, DC: National Academy Press National Aeronautics and Space Administration (NASA). (2003). ASTER’s satellite image gallery. Pasadena, CA: NASA Jet Propulsion Laboratory. Retrieved April 14, 2004 from the World Wide Web:http://asterweb.jpl.nasa.gov/gallery/images/sanberdofire.jpg.

  • National Aeronautics and Space Administration (NASA). (2004a). Earth observatory. Houston, TX: NASA Earth Observatory. Retrieved April 14, 2004 from the World Wide Web:http://earthobservatory.nasa.gov/.

  • National Aeronautics and Space Administration (NASA). (2004b). Global fire monitoring. Houston, TX: NASA Earth Observatory. Retrieved April 14, 2004 from the World Wide Web:http://earthobservatory.nasa.gov/Library/GlobalFire/.

  • Nemani, R.. and Running, S. (1989). Estimation of regional terrestrial resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. Journal of Applied Meteorology 28: pp. 276-284.

    Article  Google Scholar 

  • Ottmar, R.D., Vihnanek, R.E., & Wright, C.S. (1998). Stereo photo series for quantifying natural fuels volume I: Mixed-conifer with mortality, western juniper, sagebrush, and grassland types in the interior Pacific Northwest. PMS 830. Boise, ID: National Wildfire Coordinating Group, National Interagency Fire Center.

    Google Scholar 

  • Pinker, R.T. (1990). Satellites and our understanding of the surface energy balance: Paleogeography., Paleoclimatology andPpaleoecology 82: pp.. 321-342).

    Google Scholar 

  • Pyne, S.J. (2001). Fire: A brief history. London: The British Museum Press

    Google Scholar 

  • Roberts, D.A, et al. (1998). Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sensing of the Environment 65: pp. 267-279.

    Article  Google Scholar 

  • Saaty, T.L. (1980). The analytic hierarchy process, New York: McGraw Hill.

    Google Scholar 

  • Shugart, H. H., Leemans, R. & Bonan, G.B. (Eds.). (1992). Boreal forest modeling. A systems analysis of the global boreal forest. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Strahler, A.H., Logan, T.L., & Bryant, N.A. (1978). Improving forest cover classification accuracy from Landsat by incorporating topographic information. 12th International Symposium on Remote Sensing of Environment (pp. 927-942). Ann Arbor: Environmental Research Institute of Michigan.

    Google Scholar 

  • Townshend, J. R. G., et al. (1991). Global land cover classification by remote sensing: Present capabilities and future possibilities. Remote Sensing of Environment 35: pp. 243-255.

    Article  Google Scholar 

  • U.S. Forest Service. (2002). Cerro Grande fire/photo 3. Washington, DC: U.S. Department of Agriculture, Forest Service. Retrieved April 30, 2004, from the World Wide Web: http://www.fs.fed.us/r3/fire/prevention/images/pshp/CerroFire/pages/PHOTO3.htm.

  • U.S. Forest Service. (2004). Introductory, species: pinus ponderosa. Fire Effects Information System. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. Retrieved April 30, 2004, from the World Wide Web: http://www.fs.fed.us/database/feis/plants/tree/pinpona/al.html.

  • Wildfire Alternatives. (2004). WALTER - Exploring wildfire alternatives. Tucson: University of Arizona. Retrieved April 14, 2004 from the World Wide Web: http://walter.arizona.edu/.

  • Wildland Fire Assessment System. (2002). WFAS - Wildland fire assessment system: Overview. Boise, ID: National Interagency Fire Center. Retrieved April 14, 2004 from the World Wide Web: http://www.fs.fed.us/land/wfas/.

  • Wright, H.A., & Bailey, A.W. (1982). Fire ecology. New York: John Wiley & Sons.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Yool, S. (2007). Wildfires. In: Lidstone, J., Dechano, L.M., Stoltman, J.P. (eds) International Perspectives on Natural Disasters: Occurrence, Mitigation, and Consequences. Advances in Natural and Technological Hazards Research, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2851-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2851-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2850-2

  • Online ISBN: 978-1-4020-2851-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics