Skip to main content

Light and Photosynthesis in Seagrass Meadows

  • Chapter
SEAGRASSES: BIOLOGY, ECOLOGYAND CONSERVATION

Abstract

The distribution of radiant energy in plant canopies determines one of the fundamental interactions of biophysical ecology—that of energy exchange between photosynthetic organisms and their environment. Accurate knowledge of light absorption by plant canopies permits the calculation of important plant and ecosystem-level properties, including rates of primary production, which will be the focus of this chapter. Knowledge of the interaction between light and plant canopies is also crucial for remote sensing, quantification of vegetation abundance and distribution, as well as for the development of inversion, techniques to infer plant chemical composition, important for ecosystem-scale estimates of plant growth and biogeochemical fluxes (Jacquemoud et al., 1996; Lacapra et al., 1996; Broge and Leblanc, 2000). Submerged aquatic vegetation, including seagrass beds, provide a strong optical signature that can be tracked using satellite and airborne remote sensing (Armstrong, 1993; Mumby et al., 1997; Chauvaud et al., 2001; Dierssen et al., 2003), and this will be the subject of Dekker et al., Chapter 15.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abal E, Loneragan N, Bowen P, Perry C, Udy J and Dennison W (1994) Physiological and morphological responses of the seagrass Zostera capricorni Aschers. to light intensity. J Exp Mar Biol Ecol 178: 113–129

    Article  Google Scholar 

  • Alpine AE and Cloern JE (1988) Phytoplankton growth rates in a light-limited environment, San Francisco Bay. Mar Ecol Prog Ser 44: 167–173

    Google Scholar 

  • Armstrong R (1993) Remote sensing of submerged vegetation canopies for biomass estimation. Int J Rem Sens 14: 621–627

    Google Scholar 

  • Batiuk R, Orth R, Moore K, Dennison W, Stevenson J, Staver L, Carter V, Rybicki N, Hickman R, Kollar S, Bieber S, Heasley P (1992). Chesapeake Bay Submerged Aquatic Vegetation Habitat Requirements and Restoration Targets: A Technical Synthesis. U.S. Environmental Protection Agency

    Google Scholar 

  • Beer S and Rehnberg J (1997) The acquisition of inorganic carbon by the seagrass Zostera marina. Aquat Bot 56: 277–283

    Article  CAS  Google Scholar 

  • Beer S and Waisel Y (1979) Some photosynthetic carbon fixation properties in seagrasses. Aquat Bot 7: 129–138

    Article  CAS  Google Scholar 

  • Berry H, Sewell A, Wyllie-Echeverria S, Reeves B, Mumford T, Skalski J, Zimmerman R, Archer J (2003) Puget Sound Submerged Vegetation Monitoring Project: 2000–2003 Monitoring Report, p. 57. Nearshore Habitat Program, Washington State Department of Natural Resources

    Google Scholar 

  • Broge N and Leblanc E (2000) Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf areas indices and canopy chlorophyll density. Remote Sens Environ 76: 156–172

    Article  Google Scholar 

  • Bulthuis D and Woelkerling W (1983) Biomass accumulation and shading effects of epiphytes on leaves of the seagrass, Heterozostera tasmanica, in Victoria, Australia. Aquat Bot 16: 137–148

    Article  Google Scholar 

  • Burd A and Dunton K (2001) Field verification of a light-driven model of biomass changes in the seagrass Halodule wrightii. Mar Ecol Prog Ser 209: 85–98

    Google Scholar 

  • Chauvaud S, Bouchon C and ManiĂ©re (2001) Cartographie de biocĂ©oses marines de Guadeloupe Ă  partir de donnĂ©es SPOT (rĂ©cifs coralliens, phanĂ©rogames marines, mangroves). Oceanol Acta 24: S3–S16

    Article  Google Scholar 

  • Cummings M and Zimmerman R (2003) Light harvesting and the package effect in Thalassia testudinumKoenig and Zostera marina L.: Optical constraints on photoacclimation. Aquat Bot 75: 261–274

    Article  Google Scholar 

  • Dennison WC and Alberte RS (1982). Photosynthetic respones of Zostera marina L. (eelgrass) to in situ manipulations of light intensity. Oecologia 55: 137–144

    Article  Google Scholar 

  • Dennison WC and Alberte RS (1985) Role of daily light period in the depth distribution of Zostera marina (eelgrass). Mar Ecol Prog Ser 25: 51–61

    Google Scholar 

  • Dennison W, Orth R, Moore K, Stevenson J, Carter V, Kollar S, Bergstrom P, Batiuk R (1993) Assessing water quality with submersed aquatic vegetation. Habitat requirements as barometers of Chesapeake Bay health. BioScience 43: 86–94

    Article  Google Scholar 

  • Dierssen H, Zimmerman R, Leathers R, Downes T and Davis C (2003) Remote sensing of seagrass and bathymetry in the Bahamas banks using high resolution airborne imagery. Limnol Oceangr 48: 444–455

    Article  Google Scholar 

  • Drake L, Dobbs F and Zimmerman R (2003) Effects of epiphyte load on optical properties and photosynthetic potential of the seagrasses Thalassia testudinum Koenig and Zostera marina L. Limnol Oceanogr 48: 456–463

    Article  Google Scholar 

  • Duarte C (1991a) Allometric scaling of seagrass form and productivity. Mar Ecol Prog Ser 77: 289–300

    Google Scholar 

  • Duarte CM (1991b) Seagrass depth limits. Aquat Bot 40: 363–377

    Article  Google Scholar 

  • Dunton K (1994) Seasonal growth and biomass of the subtropical seagrass Halodule wrightii in relation to continuous measurements of underwater irradiance. Mar Biol 120: 479–489

    Article  Google Scholar 

  • Durako MJ (1993) Photosynthetic utilization of CO2(aq) and HCO3- in Thalassia testudinum (Hydrocharitacae). Mar Biol 115: 373–380

    Article  Google Scholar 

  • Duysens L (1956) The flattening of the absorption spectrum of suspensions, as compared to that of solids. Biochem Biophys Acta 19: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Falkowski P and Raven J (1997) Aquatic Photosynthesis. Blackwell, Oxford UK

    Google Scholar 

  • Fourqurean JW and Zieman JC (1991) Photosynthesis, respiration and whole plant carbon budget of the seagrass Thalassia testudinum. Mar Ecol Prog Ser 69: 161–170

    Google Scholar 

  • Ganapol B and Myneni R (1992) The FN Method for the oneangle radiative transfer equation applied to plant canopies. Remote Sens Environ 39: 212–231

    Article  Google Scholar 

  • Givnish T (1987) Comparative studies on leaf form: Assessing the relative roles of selective pressures and phylogenetic constraints. New Phytol 106(Suppl): 131–160

    Article  Google Scholar 

  • Goudriaan J (1988) The bare bones of leaf-angle distribution in radiation models for canopy photosynthesis and energy exchange. Agric Forest Meterol 43: 155–169

    Article  Google Scholar 

  • Hemminga M and Duarte C (2000) Seagrass Ecology. Cambridge University Press, Cambridge UK

    Google Scholar 

  • Herzka S and Dunton K (1997) Seasonal photosynthetic patterns in the seagrass Thalassia testudinum in the western Gulf of Mexico. Mar Ecol Prog Ser 152: 103–117

    Google Scholar 

  • Invers O, Zimmerman R, Alberte R, Perez M and Romero J (2001) Inorganic carbon sources for seagrass photosynthesis: An experimental evaluation for bicarbonate use in temperate species. J Exp Mar Biol Ecol 265: 203–217

    Article  CAS  Google Scholar 

  • Jacquemoud S, Ustin S, Verdebout J, Schmuck J, Andreoli G and Hosgood B (1996) Estimating leaf biochemistry using the PROPSECT leaf optical properties model. Remote Sens Environ 56: 194–202

    Article  Google Scholar 

  • Kenworthy W and Fonseca M (1996) Light requirements of seagrasses Halodule wrightii and Syringodium filiforme derived from the relationship between diffuse light attenuation and maximum depth distribution. Estuar 19: 740–750

    Article  Google Scholar 

  • Kirchman DL, Mazzella L, Alberte RS and Mitchell R (1984) Epiphytic bacterial production on Zostera marina. Mar Ecol Prog Ser 15: 207–211

    Google Scholar 

  • Kirk JTO (1994) Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. Cambridge University Press, Cambridge UK

    Google Scholar 

  • Klumpp D, Salita-Espinosa J and Fortes M (1992) The role of epophytic periphyton and macroinvertebrate grazers in the trophic flux of a tropical seagrass community. Aquat Bot 43: 327–349

    Article  Google Scholar 

  • Kraemer GP and Alberte RS (1993) Age-related patterns of metabolism and biomass in subterranean tissues of Zostera marina L. (eelgrass). Mar Ecol Prog Ser 95: 193–203

    Google Scholar 

  • Lacapra V, Melack J, Gastil M and Valeriano D (1996) Remote sensing of foliar chemistry of inundated rice with imaging spectrometry. Remote Sens Environ 55: 50–58

    Article  Google Scholar 

  • Lee D and Graham R (1986) Leaf optical properties of rainforest sun and extreme shade plants. Am J Bot 73: 1100–1108

    Article  Google Scholar 

  • Mazzella L and Alberte RS (1986) Light adaptation and the role of autotrophic epiphytes in primary production of the temperate seagrass, Zostera marina L. J Exp Mar Biol Ecol 100: 165–180

    Article  Google Scholar 

  • Millhouse J and Strother S (1986) The effect of pH on the inorganic carbon source for photosynthesis in the seagrass Zostera mulleri Irmish ex Aschers. Aquat Bot 24: 199–209

    Article  CAS  Google Scholar 

  • Mobley C (1989) A numerical model for the computation of radiance distribution in natural waters with wind-roughened surfaces. Limnol Oceanogr 34: 1473–1483

    Article  Google Scholar 

  • Mobley C (1994) Light and water: Radiative transfer in natural waters. Academic Press, San Diego, CA USA

    Google Scholar 

  • Morel A (1978) Available, useable and stored radiant energy in relation to marine photosynthesis. Deep-Sea Research 25: 637–688

    Google Scholar 

  • Morris L and Tomasko D (1993) Proceedings and Conclusions of aWorkshop on: Submerged Aquatic Vegetation and Photosynthetically Active Radiation, p. 244. St. Johns River Water Management District Palatka, FL, USA

    Google Scholar 

  • Mumby P, Green E, EdwardsAand Clark C (1997) Measurement of seagrass standing crop using satellite and digital airborne remote sensing. Mar Ecol Prog Ser 159: 51–60

    Google Scholar 

  • Norman D, Ruggerone J, June A and Wyllie-Echeverria S (1995) Development of a Baseline Monitoring Program for Dumas Bay, Federal Way, Washington

    Google Scholar 

  • Norman J and Welles J (1983) Radiative transfer in an array of plant canopies. Agron J 75: 481–488

    Article  Google Scholar 

  • Olesen B and Sand-Jensen K (1993) Seasonal acclimatization of eelgrass Zostera marina growth to light. Mar Ecol Prog Ser 94: 91–99

    Google Scholar 

  • Penhale PA (1977) Macrophyte-epiphyte biomass and productivity in an eelgrass (Zostera marina L.) community. J Exp Mar Biol Ecol 26: 211–224

    Article  CAS  Google Scholar 

  • Sand-Jensen K (1977) Effect of epiphytes on eelgrass photosynthesis. Aquat Bot 3: 55–63

    Article  CAS  Google Scholar 

  • Short F (1980) A simulation model of the seagrass production system, p. 353. In: Phillips R and McRoy C (eds) Handbook of Seagrass Biology. An Ecosystem Perspective. Garland Press, New York, NY, USA

    Google Scholar 

  • Short F and Wyllie-Echeverria S (1996) Natural and humaninduced disturbance of seagrasses. Environmental Conservation 23: 17–27

    Article  Google Scholar 

  • Shultis J and Myneni R (1988) Radiative transfer in vegetation canopies with anisotropic scattering. J Quant Spectrosc Radiat Transfer 39: 115–129

    Article  Google Scholar 

  • Smith C and Alberte R (1994) Characterization of in vivo absorption features of chlorophyte, phaeophyte and rhodophyte algal species. Mar Biol 118: 511–521

    Article  Google Scholar 

  • Smith RD (1989) Anaerobic metabolism in roots of the seagrass Zostera marina, Molecular Genetics and Cell Biology p. 241. The University of Chicago, Chicago, IL USA

    Google Scholar 

  • Smith RD, Dennison WC and Alberte RS (1984) Role of seagrass photosynthesis in root aerobic processes. Plant Physiol 74: 1055–1058

    Article  PubMed  CAS  Google Scholar 

  • Smith RD, Pregnall AM and Alberte RS (1988) Effects of anaerobiosis on root metabolism of the seagrass Zostera marina L. (eelgrass). Mar Biol 98: 131–141

    Article  CAS  Google Scholar 

  • Terrados J, Borum J, Duarte C, Fortes M, Kamp-Nielsen L, Aqwan N (1999) Nutrient and mass allocation of south-east Asian seagrasses. Aquat Bot 63: 203–217

    Article  Google Scholar 

  • Tomlinson PB (1980) Leaf morphology and anatomy in seagrasses, p. 7–28. In: Phillips R and McRoy C (eds), Handbook of Seagrass Biology. An Ecosystem Perspective Garland Press, New York, NY, USA

    Google Scholar 

  • Törnblom E and Søndergaard M (1999) Seasonal dynamics of bacterial biomass and production on eelgrass Zostera marina leaves. Mar Ecol Prog Ser 179: 231–240

    Google Scholar 

  • Van Montrfrans J, Wetzel R and Orth R (1984) Epiphyte-grazer relationships in seagrass meadows: Consequences for seagrass growth and production. Estuaries 7: 289–309

    Article  Google Scholar 

  • Vergera J, Perez-Llorens J, Peralta G, Hernandez I and Niell F (1997) Seasonal variation of photosynthetic performance and light attenuation in Ulva canopies from Palmones River estuary. J Phycol 33: 773–779

    Article  Google Scholar 

  • Zimmerman R (2003) A biooptical model of irradiance distribution and photosynthesis in seagrass canopies. Limnol Oceanogr 48: 568–585

    Article  Google Scholar 

  • Zimmerman R and Alberte R (1996) Effect of light/dark transition on carbon translocation in eelgrass Zostera marina seedlings. Marine Ecology Progress Series 136: 305–309

    Google Scholar 

  • Zimmerman R and Caffrey J (2002) Chapter 8. Primary Producers, p. 118–133. In: Caffrey J, Brown M, Tyler W and Silberstein M (eds) Changes in a California Estuary. A Profile of Elkhorn Slough. Elkhorn Slough Foundation

    Google Scholar 

  • Zimmerman R, Kohrs D and Alberte R (1996) Top-down impact through a bottom-up mechanism: The effect of limpet grazing on growth, productivity and carbon allocation of Zostera marina. Oecologia 107: 560–567

    Article  Google Scholar 

  • Zimmerman R, Kohrs D, Steller D and Alberte R (1997) Impacts of CO2 -enrichment on productivity and light requirements of eelgrass. Plant Physiol 115: 599–607

    PubMed  CAS  Google Scholar 

  • Zimmerman R, Steller D, Kohrs D and Alberte R (2001) Topdown impact through a bottom-up mechanism: In situ effects of limpet grazing on growth, light requirements and survival of Zostera marina L. (eelgrass). Mar Ecol Prog Ser 218: 127–140

    Google Scholar 

  • Zimmerman RC, Cabello-Pasini A and Alberte RS (1994) Modeling daily production of aquatic macrophytes from irradiance measurements: A comparative analysis. Mar Ecol Prog Ser 114: 185–196

    Google Scholar 

  • Zimmerman RC, Reguzzoni JL and Alberte RS (1995) Eelgrass (Zostera marina L.) transplants in San Francisco Bay: Role of light availability on metabolism, growth and survival. Aquat Bot 51: 67–86

    Article  Google Scholar 

  • Zimmerman RC, Reguzzoni JL, Wyllie-Echeverria S, Josselyn M and Alberte RS (1991) Assessment of environmental suitability for growth of Zostera marina L. (eelgrass) in San Francisco Bay. Aquat Bot 39: 353–366

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Zimmerman, R.C. (2007). Light and Photosynthesis in Seagrass Meadows. In: SEAGRASSES: BIOLOGY, ECOLOGYAND CONSERVATION. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2983-7_13

Download citation

Publish with us

Policies and ethics